Answer:
Heat flux of CO₂ in cgs
= 170.86 x 10⁻⁹ mol / cm²s
SI units
170.86 x 10⁻⁸ kmol/m²s
Explanation:
Answer:
The code is attached.
Explanation:
I created a string s including 6 colors with spaces in between. Then I converted the string into a list x by using split() method. I used three different methods for removing elements from the list. These methods are remove(), pop() and del.
Then I used methods append(), insert() and extend() for adding elements to the list.
Finally I converted list into a string using join() and adding space in between the elements of the list.
Answer:
Explanation:
The python code to generate this is quite simple to run.
i hope you understand everything written here, you can as well try out other problems to understand better.
First to begin, we import the package;
Code:
import pandas as pd
import matplotlib.pyplot as plt
name = input('Enter name of the file: ')
op = input('Enter name of output file: ')
df = pd.read_csv(name)
df['Date'] = pd.to_datetime(df["Date"].apply(str))
plt.plot(df['Date'],df['Absent']/(df['Present']+df['Absent']+df['Released']),label="% Absent")
plt.legend(loc="upper right")
plt.xticks(rotation=20)
plt.savefig(op)
plt.show()
This should generate the data(plot) as seen in the uploaded screenshot.
thanks i hope this helps!!!
Answer:
The correct answer is
option C. current to pneumatic (V/P)
Explanation:
A current to pneumatic controller is basically used to receive an electronic signal from a controller and converts it further into a standard pneumatic output signal which is further used to operate a positioner or control valve. These devices are reliable, robust and accurate.
Though Voltage and current to pressure transducers are collectively called as electro pneumatic tranducers and the only electronic feature to control output pressure in them is the coil.
Answer:
If Reynolds number increases the extent of the region around the object that is affected by viscosity decreases.
Explanation:
Reynolds number is an important dimensionless parameter in fluid mechanics.
It is calculated as;

where;
ρ is density
v is velocity
d is diameter
μ is viscosity
All these parameters are important in calculating Reynolds number and understanding of fluid flow over an object.
In aerodynamics, the higher the Reynolds number, the lesser the viscosity plays a role in the flow around the airfoil. As Reynolds number increases, the boundary layer gets thinner, which results in a lower drag. Or simply put, if Reynolds number increases the extent of the region around the object that is affected by viscosity decreases.