Answer:
The distance between the station A and B will be:
Explanation:
Let's find the distance that the train traveled during 60 seconds.
We know that starts from rest (v(0)=0) and the acceleration is 0.6 m/s², so the distance will be:


Now, we need to find the distance after 25 min at a constant speed. To get it, we need to find the speed at the end of the first distance.


Then the second distance will be:

The final distance is calculated whit the decelerate value:

The final velocity is zero because it rests at station B. The initial velocity will be v(1).


Therefore, the distance between the station A and B will be:
I hope it helps you!
False because yeah jkdkdlgkdjfkekvkx
Answer:
No, I did not. Thank you for educating me!
Explanation:
Have a great day!
The most accurate answer to that process is definitely precision. The Rotary encoder is an electro-mechanical device that converts the angular position or motion of a shaft or axle to analog or digital output signals. The efficiency of these devices is subject to the position and angle of the axis in front of the encoder.
Most cars use reduction systems in their gearboxes that convert a certain signal input into an output. Mechanically for example, a 20: 1 reduction box already infers that if there is a revolution in the input at the output there are 20. That same transferred to the encoder pulses would imply greater precision.
For example a decoder with 50 holes would have to read 1000 pulses (50 * 20) which is basically a degree of accuracy of 0.36 degrees. In this way it is possible to conclude that if the assembly of the encoder is carried out next to the motor and not at the output, it can be provided with greater precision at the time of reading.