Let us see. We have that Newton's Law holds in this case, so

where a is the acceleration of the ball, F the forces acting on it and m its mass. There are 2 forces acting on it, the force of gravity W and air resistance R. We can easily see that these two act in opposite directions (gravity towards the ground, resistance upwards), so |ΣF|=W-R (1) . We have that W=m*g where <span>g=9.81 m/s2. We also have that ΣF=9.40*m. From this relationship, substituting into (1) all the known values, we get that R=m(9.81*-9.40)=m*0,41. We take then the ratio R/W. This is equal to:

. This is our final answer.
</span>
Answer:
The greater the luminosity of a star, the longer its period of oscillation.
Lithification is a diagenetic process in which loose sediment is converted to hard rocky compaction and cementation. So sediments (sand) are buried the increase in pressure from the weight of the overlaying material pushes the grains closer together. The volume of sediment is reduced and the fluids between the grains are also squeezed out. This leaves the sandstone tightly compressed <span>together this is lithification.</span>
CORRECT ANSWER:
a- Cell-surface receptors bind polar signaling molecules; intracellular receptors bind nonpolar signaling molecules.
STEP-BY-STEP EXPLANATION:
The complete question from book is
According to Figure 9.6, what is a key difference between cell signaling by a cell-surface receptor and cell signaling by an intracellular receptor?
a- Cell-surface receptors bind polar signaling molecules; intracellular receptors bind nonpolar signaling molecules.
b- Signaling molecules that bind to cell-surface receptors lead to cellular responses restricted to the cytoplasm; signaling molecules that bind to intracellular receptors lead to cellular responses restricted to the nucleus.
c- Cell-surface receptors bind to specific signaling molecules; intracellular receptors bind any signaling molecule.
d- Cell-surface receptors typically bind to signaling molecules that are smaller than those bound by intracellular receptors.
e- None of the other answer options is correct.
Answer:
a)
reaction time = 0.70 s
distance travelled in reaction time = v*t
= 20 m/s * 0.70 s
= 14 m
So, when brake is applied, distance remaining= 110 m - 14 m = 96 m
Answer: 96 m
b)
vf = 0 m/s
d = 96 m
vi = 20 m/s
use:
vf^2 = vi^2 + 2*a*d
0 = 20^2 + 2*a*96
-400 = 2*a*96
a = -2.08 m/s^2
Answer: -2.08 m/s^2
c)
use:
vf = vi + a*t
0 = 20 - 2.08*t
t = 9.6 s
Answer: 9.6 s
Explanation: