Answer:
False.
Explanation:
From Kepler's Third Law of plenetary motion, we know that:
<em>"The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit."</em>
Or, as expressed in mathematical terms:
, where <em>a</em> is the semi-major axis of the orbit (the distance from the center), and <em>T </em>is the orbital period of the satellite.
From this expression we can clearly see that if the orbit's semi-major axis is doubled, orbital period will be
times longer to compensate the variation.
<span>The molecules in the thermometer’s liquid spread apart. (B)</span>
Answer:
Part a)

Part b)

Part d)
As we know that due to induction of charge there will be same charge appear on the inner and outer surface of the cylinder but the sign of the charge must be different
On the inner side of the cylinder there will be negative charge induce on the inner surface and on the outer surface of the cylinder there will be same magnitude charge with positive sign.
Explanation:
Part a)
By Guass law we know that



Part b)
Outside the outer cylinder we will again use Guass law



Part d)
As we know that due to induction of charge there will be same charge appear on the inner and outer surface of the cylinder but the sign of the charge must be different
On the inner side of the cylinder there will be negative charge induce on the inner surface and on the outer surface of the cylinder there will be same magnitude charge with positive sign.
Answer:
350 miles
Explanation:
When the car starts 2 hours later, the train would have a head start of
50 * 2 = 100 miles
The speed of the car relative to the train is
70 - 50 = 20 mi/hr
For the car to catch up with the train, it must cover the 100 miles difference at the rate of 20mi/hr. So the time it would need to cover this difference is
100 / 20 = 5 hours
After 5 hours, the car would have traveled a distance of
5 * 70 = 350 miles which is also the distance from the station to where the car catches up
Answer:
An increase in air temperature because of its compression.
Explanation:
The Gay-Lussac's Law states that a gas pressure is directly proportional to its temperature in an enclosed system to constant volume.
<em>where P: is the gas pressure, T: is the gas temperature and k: is a constant.</em>
Therefore, due to Gay-Lussac's Law, when the plunger is pushed down very rapidly, the pressure of the air increase, which leads to its temperature increase. That is why cotton flashes and burns.
I hope it helps you!