Answer:
Stress = 4.67 * 10^-7 N/m²
Explanation:
Young's modulus of the material = Stress/Strain
Given
Young's modulus = 228 x 10^9 Pa
Stress = 106,483 Pa
Required
Strain
From the formula;
Strain = Stress/Young modulus
Strain = 106,483 /228 x 10^9
Stress = 4.67 * 10^-7 N/m²
<h2>
Answer:</h2>
The rate of deceleration is -0.14
<h2>
Explanation:</h2>
Using one of the equations of motion;
v = u + at
where;
v = final velocity of the boat = 0m/s (since the boat decelerates to a stop)
u = initial velocity of the boat = 25m/s
a = acceleration of the boat
t = time taken for the boat to accelerate/decelerate from u to v = 3 minutes
<em>Convert the time t = 3 minutes to seconds;</em>
=> 3 minutes = 3 x 60 seconds = 180seconds.
<em>Substitute the values of v, u, t into the equation above. We have;</em>
v = u + at
=> 0 = 25 + a(180)
=> 0 = 25 + 180a
<em>Make a the subject of the formula;</em>
=> 180a = 0 - 25
=> 180a = -25
=> a = -25/180
=> a = -0.14
The negative value of a shows that the boat is decelerating.
Therefore, the rate of deceleration of the speed boat is 0.14
Answer:
Magnitude of the force between the charges is F = 1.92×10^20N
Explanation:
Given the magnitude of force according to coulombs law
F =K[(q1*q2)/r2]
Where q1 and q2 are the charges
r is the distance between the charges
K is the coulombs constant
Substituting the given values, we have;
F = 8.98×10^9 × 1.5×10^6 × 3.2×10^4/1.5²
F = 43.1×10^19/2.25
F = 19.16×10^19N
F = 1.92×10^20N
Answer:
28,800m/p second
Explanation:
Calculate the distance per second so, 400m/50 s= 8m/p second now knowing the speed/hour and knowing an hour has 3,600 seconds,multiply it by 8 then you will get 28,800m/p second, or 28.8km/h