Answer:
Explanation:
Initial velocity , u = 30 m/s
final velocity , v = 10 m/s
time , t = 5 seconds
1. Acceleration = v - u / t
= 10 - 30 / 5
= -20 / 5
= <u><em>- 4 m/s</em></u>
Answer:
40 N
Explanation:
We are given that
Speed of system is constant
Therefore, acceleration=a=0
Tension applied on block B=T=50 N
Friction force=f=10 N
We have to find the friction force acting on block A.
Let T' be the tension in string connecting block A and block B and friction force on block A be f'.
For Block B

Where
=Mass of block B
Substitute the values


For block A

Where
Mass of block A
Substitute the values


Hence, the friction force acting on block A=40 N
Answer:
The value of the centripetal forces are same.
Explanation:
Given:
The masses of the cars are same. The radii of the banked paths are same. The weight of an object on the moon is about one sixth of its weight on earth.
The expression for centripetal force is given by,

where,
is the mass of the object,
is the velocity of the object and
is the radius of the path.
The value of the centripetal force depends on the mass of the object, not on its weight.
As both on moon and earth the velocity of the cars and the radii of the paths are same, so the centripetal forces are the same.
As we know that as per Newton's II law we have

here we will have
= change in momentum
= time interval in which momentum is changed
now in order to have least injury during jumping we need to have least force on the jumper
so in order to have least force we can say that the momentum must have to change in maximum time so that amount of force must be least
So we need to increase the time in which momentum of the system is changed