Answer:
don't know I just want point for answers
BMI is a measure of body fat determined by ones Height, Weight, and Gender.
Answer:
1.
109.6 cm , - 1.74 , real
2.
1.5
Explanation:
1.
d₀ = object distance = 63 cm
f = focal length of the lens = 40 cm
d = image distance = ?
using the lens equation


d = 109.6 cm
magnification is given as


m = - 1.74
The image is real
2
d₀ = object distance = a
d = image distance = - (a + 5)
f = focal length of lens = 30 cm
using the lens equation


a = 10
magnification is given as



m = 1.5
D all of the above applies to the functions of the nervous system.
The horizontal force is m*v²/Lh, where m is the total mass. The vertical force is the total weight (233 + 840)N.
<span>Fx = [(233 + 840)/g]*v²/7.5 </span>
<span>v = 32.3*2*π*7.5/60 m/s = 25.37 m/s </span>
<span>The horizontal component of force from the cables is Th + Ti*sin40º and the vertical component of force from the cable is Ta*cos40º </span>
<span>Thh horizontal and vertical forces must balance each other. First the vertical components: </span>
<span>233 + 840 = Ti*cos40º </span>
<span>solve for Ti. (This is the answer to the part b) </span>
<span>Horizontally </span>
<span>[(233 + 840)/g]*v²/7.5 = Th + Ti*sin40º </span>
<span>Solve for Th </span>
<span>Th = [(233 + 840)/g]*v²/7.5 - Ti*sin40º </span>
<span>using v and Ti computed above.</span>