1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GuDViN [60]
2 years ago
12

Describe the pipe support​

Engineering
1 answer:
vova2212 [387]2 years ago
7 0

Answer:

A pipe support or pipe hanger is a designed element that transfer the load from a pipe to the supporting structures. ... The four main functions of a pipe support are to anchor, guide, absorb shock, and support a specified load. Pipe supports used in high or low temperature applications may contain insulation materials.

You might be interested in
. Using the Newton Raphson method, determine the uniform flow depth in a trapezoidal channel with a bottom width of 3.0 m and si
Over [174]

Answer:

y  ≈ 2.5

Explanation:

Given data:

bottom width is 3 m

side slope is 1:2

discharge is 10 m^3/s

slope is 0.004

manning roughness coefficient is 0.015

manning equation is written as

v =1/n R^{2/3} s^{1/2}

where R is hydraulic radius

S = bed slope

Q = Av =A 1/n R^{2/3} s^{1/2}

A = 1/2 \times (B+B+4y) \times y =(B+2y) y

R =\frac{A}{P}

P is perimeter =  (B+2\sqrt{5} y)

R =\frac{(3+2y) y}{(3+2\sqrt{5} y)}

Q = (2+2y) y) \times 1/0.015 [\frac{(3+2y) y}{(3+2\sqrt{5} y)}]^{2/3} 0.004^{1/2}

solving for y100 =(2+2y) y) \times (1/0.015) [\frac{(3+2y) y}{(3+2\sqrt{5} y)}]^{2/3} \times 0.004^{1/2}

solving for y value by using iteration method ,we get

y  ≈ 2.5

5 0
3 years ago
An o ring intended for use in a hydraulic system using MIL-H-5606 (mineral base) fluid will be marked with
Alex_Xolod [135]

An o ring intended for use in a hydraulic system using MIL-H-5606 (mineral base) fluid will be marked with a blue stripe or dot.

8 0
2 years ago
Question 2 (Multiple Choice Worth 3 points)
ololo11 [35]

Answer:

the car to the right

Explanation:

its in the name the RIGHT of way hope it helps good luck

6 0
3 years ago
Initially when 1000.00 mL of water at 10oC are poured into a glass cylinder, the height of the water column is 1000.00 mm. The w
Dafna11 [192]

Answer:

\mathbf{h_2 =1021.9 \  mm}

Explanation:

Given that :

The initial volume of water V_1 = 1000.00 mL = 1000000 mm³

The initial temperature of the water  T_1 = 10° C

The height of the water column h = 1000.00 mm

The final temperature of the water T_2 = 70° C

The coefficient of thermal expansion for the glass is  ∝ = 3.8*10^{-6 } mm/mm  \ per ^oC

The objective is to determine the the depth of the water column

In order to do that we will need to determine the volume of the water.

We obtain the data for physical properties of water at standard sea level atmospheric from pressure tables; So:

At temperature T_1 = 10 ^ 0C  the density of the water is \rho = 999.7 \ kg/m^3

At temperature T_2 = 70^0 C  the density of the water is \rho = 977.8 \ kg/m^3

The mass of the water is  \rho V = \rho _1 V_1 = \rho _2 V_2

Thus; we can say \rho _1 V_1 = \rho _2 V_2;

⇒ 999.7 \ kg/m^3*1000 \ mL = 977.8 \ kg/m^3 *V_2

V_2 = \dfrac{999.7 \ kg/m^3*1000 \ mL}{977.8 \ kg/m^3 }

V_2 = 1022.40 \ mL

v_2 = 1022400 \ mm^3

Thus, the volume of the water after heating to a required temperature of  70^0C is 1022400 mm³

However; taking an integral look at this process; the volume of the water before heating can be deduced by the relation:

V_1 = A_1 *h_1

The area of the water before heating is:

A_1 = \dfrac{V_1}{h_1}

A_1 = \dfrac{1000000}{1000}

A_1 = 1000 \ mm^2

The area of the heated water is :

A_2 = A_1 (1  + \Delta t  \alpha )^2

A_2 = A_1 (1  + (T_2-T_1) \alpha )^2

A_2 = 1000 (1  + (70-10) 3.8*10^{-6} )^2

A_2 = 1000.5 \ mm^2

Finally, the depth of the heated hot water is:

h_2 = \dfrac{V_2}{A_2}

h_2 = \dfrac{1022400}{1000.5}

\mathbf{h_2 =1021.9 \  mm}

Hence the depth of the heated hot  water is \mathbf{h_2 =1021.9 \  mm}

4 0
3 years ago
Cavitation usually occurs because:
IgorLugansk [536]

Answer:

B) the liquid accelerated to high velocities.

<em>I</em><em> </em><em>hope</em><em> </em><em>this helps</em><em> </em>

3 0
3 years ago
Other questions:
  • Please select the word from the list that best fits the definition I love horses and want to be a veterinarian
    12·2 answers
  • 11.A heat engine operates between two reservoirs at 800 and 20°C. One-half of the work output of the heat engine is used to driv
    6·1 answer
  • Light energy produces the only voltage in a solar cell. (a)-True(T) (b)- false(F)
    9·1 answer
  • After a capacitor is fully chargerd, a small amount of current will flow though it. what is this current called?
    14·1 answer
  • Which clauses in the Software Engineering Code of Ethics are upheld by a whistleblower (check all that apply). a. "Respect confi
    12·1 answer
  • Which of the following is not necessary a reason to machine a brake drum?
    8·1 answer
  • Examples of reciprocating motion in daily life
    14·1 answer
  • B) Calculate the FS against uplift and calculate effoctive stress at the base level for water
    11·1 answer
  • I will mark brainliest.
    6·2 answers
  • Technician A says that the use of methanol in internal combustion engines has declined over the years. Technician B says that th
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!