Answer:
attached below
Explanation:
a) G(s) = 1 / s( s+2)(s + 4 )
Bode asymptotic magnitude and asymptotic phase plots
attached below
b) G(s) = (s+5)/(s+2)(s+4)
phase angles = tan^-1 w/s , -tan^-1 w/s , tan^-1 w/4
attached below
c) G(s)= (s+3)(s+5)/s(s+2)(s+4)
solution attached below
Answer:
Cyclical
Explanation:
I looked at the next question on edgenuity and it said it in the question.
Answer:
The time required to elute the two species is 53.3727 min
Explanation:
Given data:
tA = retention time of A=16.63 min
tB=retention time of B=17.63 min
WA=peak of A=1.11 min
WB=peak of B=1.21 min
The mathematical expression for the resolution is:

The mathematical expression for the time to elute the two species is:

Here
ReB = 1.5

Answer:
t = 2244.3 sec
Explanation:
calculate the thermal diffusivity


Temperature at 28 mm distance after t time = = 50 degree C
we know that

![\frac{ 50 -25}{300-25} = erf [\frac{28\times 10^{-3}}{2\sqrt{1.34\times 10^{-5}\times t}}]](https://tex.z-dn.net/?f=%5Cfrac%7B%2050%20-25%7D%7B300-25%7D%20%3D%20erf%20%5B%5Cfrac%7B28%5Ctimes%2010%5E%7B-3%7D%7D%7B2%5Csqrt%7B1.34%5Ctimes%2010%5E%7B-5%7D%5Ctimes%20t%7D%7D%5D)

from gaussian error function table , similarity variable w calculated as
erf w = 0.909
it is lie between erf w = 0.9008 and erf w = 0.11246 so by interpolation we have
w = 0.08073
![erf 0.08073 = erf[\frac{3.8245}{\sqrt{t}}]](https://tex.z-dn.net/?f=erf%200.08073%20%3D%20erf%5B%5Cfrac%7B3.8245%7D%7B%5Csqrt%7Bt%7D%7D%5D)

solving fot t we get
t = 2244.3 sec
You can use like a thickish paper but not to heavy and do it spiral and fall it with bubble paper and light things and then you spin it while you drop and it won’t crack