Answer:
Option (A) the solid X is ground to a fine powder.
Explanation:
X(s) + 2B(aq) → X+(aq) + B2(g)
In the reaction above, the rate of the reaction will be highest, when X being a solid is ground to fine powder.
Grounding X to fine powder simply means increasing the surface area of X.
An increase in surface area of reactants will definitely increase the rate of reaction because the particles of the solid will collide with the right orientation and hence speed up the reaction rate.
The masses can be found by substractions:
- Mass of CaSO₄.H2O (hydrate):
16.05 g - 13.56 g = 2.49 g
15.07 g - 13.56 g = 1.51 g
- The mass of water is equal to the difference between the mass of the hydrate and the mass of the anhydrate:
2.49 g - 1.51 g = 0.98 g
- The percent of water is found by the formula:
massWater ÷ massHydrate * 100%
0.98 g ÷ 2.49 g * 100% = 39.36%
- The mole of water is calculated using water's molecular weight (18g/mol):
0.98 g ÷ 18 g/mol = 0.054 mol water
- A similar procedure is made for the mole of salt (CaSO₄ = 136.14 g/mol)
1.51 g ÷ 136.14 g/mol = 0.011 mol CaSO₄
- The ratio of mole of water to mole of anhydrate is:
0.054 mol water / 0.011 mol CaSO₄ = 0.49
In other words the molecular formula for the hydrate salt is CaSO₄·0.5H₂O
Answer:
there is the answers. hope this helps
Answer:
A
Explanation:
The answer A is the best answer because it contains the most general characteristic of a chemical change.
Answer:
19 g
Explanation:
Data Given:
Sodium Chloride (table salt) = 50 g
Amount of sodium (Na) = ?
Solution:
Molecular weight calculation:
NaCl = 23 + 35.5
NaCl = 58.5 g/mol
Mass contributed by Sodium = 23 g
calculate the mole percent composition of sodium (Na) in sodium Chloride.
Since the percentage of compound is 100
So,
Percent of sodium (Na) = 23 / 58.5 x 100
Percent of sodium (Na) = 39.3 %
It means that for ever gram of sodium chloride there is 0.393 g of Na is present.
So,
for the 50 grams of table salt (NaCl) the mass of Na will be
mass of sodium (Na) = 0.393 x 50 g
mass of sodium (Na) = 19 g