Answer:
f = 5 cm
Explanation:
using the thin lens equation, given as follows:

where,
f = focal length = ?
do = the distance of object from lens = 20 cm
di = the distance of image from lens = 6.6667 cm
Therefore,

<u>f = 5 cm</u>
Answer:
Explanation:
Given
mass of bus along with travelers travelling in North direction is 
speed of bus towards North 
mass of bus travelling in South direction is 
speed of bus 
mass of each Passenger in south moving bus 
Momentum of North moving bus



Momentum with south moving bus


For total momentum to be towards south
should be greater than 0
thus for least value of n



Quantum numbers<span> allow us to both simplify and dig deeper into electron configurations. Electron configurations allow us to identify energy level, subshell, and the number of electrons in those locations. If you choose to go a bit further, you can also add in x,y, or z subscripts to describe the exact orbital of those subshells (for example </span><span>2<span>px</span></span>). Simply put, electron configurations are more focused on location of electrons then anything else.
<span>
Quantum numbers allow us to dig deeper into the electron configurations by allowing us to focus on electrons' quantum nature. This includes such properties as principle energy (size) (n), magnitude of angular momentum (shape) (l), orientation in space (m), and the spinning nature of the electron. In terms of connecting quantum numbers back to electron configurations, n is related to the energy level, l is related to the subshell, m is related to the orbital, and s is due to Pauli Exclusion Principle.</span>
Answer:
I think it's bigger than most galaxies
<span>F x L = W x X whereW=weight is total load = 80, L is length from fulcrum which is the unknown and what we are solving for. x= length we know. and F equals 50 force we know. So (W*X)/F=LL equals 64</span>