Answer:
619°C
Explanation:
Given data:
Initial volume of gas = 736 mL
Initial temperature = 15.0°C
Final volume of gas = 2.28 L
Final temperature = ?
Solution:
Initial volume of gas = 736 mL (736mL× 1L/1000 mL = 0.736 L)
Initial temperature = 15.0°C (15+273 = 288 K)
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
T₂ = T₁V₂/V₁
T₂ = 2.28 L × 288 K / 0.736 L
T₂ = 656.6 L.K / 0.736 L
T₂ = 892.2 K
K to °C:
892.2 - 273.15 = 619°C
Answer: 1.4x10-3 g N2O4
Explanation: First convert molecules of N2O4 to moles using Avogadro's Number. Then convert moles to mass using the molar mass of N2O4.
9.2x10^18 molecules N2O4 x 1 mole N2O4 / 6.022x10²³ molecules N2O4
= 1.53x10-5 moles N2O4
1.53x10-5 moles N2O4 x 92 g N2O4/ 1 mole N2O4
= 1.4x10-3 g N2O4
Answer:
heyy do you got the answer? i got that cuestion but i need the answer!!! did you finally get it?
Explanation:
Answer: A
Explanation:
The buoyancy force only takes affect when an object is placed in water and floats. This occurs because the density of that object is less than the density of water.
Water is the main liquid used for measuring the density of an object.
Hope this helps! Please tell me if I am wrong :3