1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lina20 [59]
3 years ago
10

Cindy pours cool milk into a hot bowl of oatmeal and then stirs it with a room-temperature spoon. Which substance will have heat

flow from it to the other substances?
the milk
the spoon
the oatmeal
the surrounding air
Physics
1 answer:
lakkis [162]3 years ago
7 0

Answer:

The OatMeal

Explanation:

You might be interested in
Breaking a pencil in half is an example of: options:
Licemer1 [7]

Answer:

b

Explanation:

8 0
3 years ago
Read 2 more answers
A football is thrown horizontally with an initial velocity of(16.6 {\rm m/s} ){\hat x}. Ignoring air resistance, the average acc
Ray Of Light [21]

Answer:

A) 16.6 m/s i -17.2 m/s j B) 23.9 m/s  c) 46º below horizontal.

Explanation:

A) Once released, the football is not under the influence of any external force in the horizontal direction, so it  continues moving at a constant speed equal to the initial velocity, i.e., 16.6 m/s.

If we choose the horizontal direction to be coincident with the x-axis, and make positive the direction towards the right (assuming that  this was the direction along which the football was thrown), we can write the horizontal component of the veelocity vector, as follows:

vₓ = 16.6 m/s i

In the vertical direction, the football, once released, is in free fall, starting from rest.

So, we can find the vertical component of the velocity vector, at a given point in time, applying the definition of acceleration, as follows:

vy = a*t = -g*t = -9.81 m/s²*1.75 s = -17.2 m/s

Assuming that the upward direction is the positive  for the y-axis (perpendicular to the chosen  x-axis), we can write the vertical component of  the velocity vector, at t=1.75 s, as follows:

vy = -17.2 m/s j

So, the velocity vector, in terms of the unit vectors i and j, can be written in this way:

v = 16.6 m/s i -17.2 m/s j

b) The magnitude of this vector can be found applying trigonometry, as the magnitude is the hypotenuse of a triangle with sides equal to vx and vy, as follows:

v =\sqrt{(16.6m/s)^{2}+ (-17.2m/s)^{2}} = 23.9 m/s

v = 23.9 m/s

c) The direction of the vector (below the horizontal) can be found as the angle which tangent is given by the quotient between vy and vx, as follows:

tg θ =\frac{-17.2}{16.6} =-1.036

⇒ θ = tg⁻¹ (-1.036) = 46º below horizontal.

6 0
3 years ago
A car's bumper is designed to withstand a 5.04 km/h (1.4-m/s) collision with an immovable object without damage to the body of t
emmasim [6.3K]

Answer:

the magnitude of the average force on the bumper is 3189.8 N

Explanation:

Given the data in the question;

In terms of force and displacement, work done is;

W =F^> × x^>

W = Fxcos\theta    ------- let this be equation 1

where F is force applied, x is displacement and θ is angle between force and displacement.

Now, since the displacement of the bumper and force acting on it is in the same direction,

hence, θ = 0°

we substitute into equation 1

W = Fxcos( 0° )

W = Fx ------- let this be equation 2

Now, using work energy theorem,

total work done on the system is equal to the change in kinetic energy of the system.

W_{net = ΔKE

= \frac{1}{2}mv² -  \frac{1}{2}mu² --------- let this be equation 3

where m is mass of object, v is final velocity, u is initial velocity.

from equation 2 and 3

Fx = \frac{1}{2}mv² -  \frac{1}{2}mu²

we make F, the subject of formula

F = \frac{m}{2x}( v² - u² )

given that mass of car m = 830 kg, x = 0.255 m, v = 0 m/s, and u = 1.4 m/s

so we substitute

F = \frac{830}{(2)(0.255)}( (0)² - (1.4)² )

F = 1627.45098 ( 0 - 1.96 )

F = 1627.45098 ( - 1.96 )

F = -3189.8 N

The negative sign indicates that the direction of the force was in opposite compare to the direction of the velocity of the car.

Therefore, the magnitude of the average force on the bumper is 3189.8 N

6 0
2 years ago
A uniform, 4.5 kg, square, solid wooden gate 2.0 mm on each side hangs vertically from a frictionless pivot at the center of its
True [87]

Answer:

The angular velocity is  w = 1.43\  rad/sec

Explanation:

From the question we are told that

   The  mass of wooden gate  is m_g = 4.5 kg

    The  length of side is  L = 2 m

    The mass of the raven is  m_r = 1.2 kg

     The initial speed of the raven is u_r = 5.0m/s

     The final speed of the raven is   v_r = 1.5 m/s

From the law of  conservation of angular momentum we express this question mathematically as

       Total initial angular momentum  of both the Raven and  the Gate =  The Final angular momentum of both the Raven and the Gate  

The initial angular momentum of the Raven is m_r * u_r * \frac{L}{2}

Note: the length is half because the Raven hit the gate at the mid point

The initial angular momentum of the Gate is  zero

Note: This above is the generally formula for angular momentum of  square objects

  The final angular velocity  of the Raven is  m_r * v_r * \frac{L}{2}

   The  final angular velocity of the Gate  is   \frac{1}{3} m_g L^2 w

Substituting this formula

  m_r * u_r * \frac{L}{2}  =   \frac{1}{3} m_g L^2 w + m_r * v_r * \frac{L}{2}

  \frac{1}{3} m_g L^2 w   =    m_r * v_r * \frac{L}{2} -   m_r * u_r * \frac{L}{2}

  \frac{1}{3} m_g L^2 w   =    m_r *  \frac{L}{2} * [u_r - v_r]

Where w is the angular velocity

     Substituting value  

   \frac{1}{3} (4.5)(2)^2  w   =    1.2 *  \frac{2}{2} * [5 - 1.5]

     6w = 4.2

       w = \frac{6}{4.2}

            w = 1.43\  rad/sec

5 0
2 years ago
Wolfgang pauli hypothesized an exclusion principle. This principle says two electrons in an atom cannot have the same what?.
PilotLPTM [1.2K]

No two electrons can have the same set of quantum numbers .

<h3>What is Wolfgang Pauli hypothesized an exclusion principle?</h3>

Pauli made a significant advance when he proposed the notion of adding a fourth quantum number to the three that were previously used to represent the quantum state of an electron. Physically speaking, the first three quantum numbers made sense since they had to do with how the electron moved about the nucleus.

The following rule was developed by Austrian physicist Wolfgang Pauli. The quantum numbers of any two electrons cannot be identical.

To put it another way, no two electrons can be in the same state. The Pauli exclusion principle is the name given to this proposition since it forbids electrons from being in the same state.

to learn more about exclusion principle go to - brainly.com/question/90573

#SPJ4

5 0
2 years ago
Other questions:
  • What is energy efficiency
    12·1 answer
  • A ball is thrown into the air by a baby alien on a planet in the system of Alpha Centauri with a velocity of 35 ft/s. Its height
    5·1 answer
  • A good model of the solar system to present to elementary is the Ptolemaic model.
    15·1 answer
  • An oceanic depth-sounding vessel surveys the ocean bottom with ultrasonic waves that travel 1530 m/s in seawater. How deep is th
    15·1 answer
  • What is the temperature if the peak of a blackbody spectrum is at 18-nm?
    12·1 answer
  • This image shows an overhead view of Atlanta’s buildings, structures, and surrounding areas and a heat map of the area. What is
    9·2 answers
  • Two identical charges, 2 m apart, exert forces of magnitude 4 N on each other. The value of each charge is: 1. 9 × 105 C 2. 4.2
    15·1 answer
  • 1. A truck with a mass of 8, 000 kg is traveling at 26.8 m/s when it hits the brakes. A.)What is the momentum of the truck befor
    6·1 answer
  • What is the current in ampere through a 100<br> watt and 120 volt device?​
    9·1 answer
  • What is true of the water cycle?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!