Answer:
hey if u repost this i can answer it u and u dont have to waste this much points but its super blury and not even able to read a single word
Answer:
the maximum length of the specimen before deformation is 0.4366 m
Explanation:
Given the data in the question;
Elastic modulus E = 124 GPa = 124 × 10⁹ Nm⁻²
cross-sectional diameter D = 4.2 mm = 4.2 × 10⁻³ m
tensile load F = 1810 N
maximum allowable elongation Δl = 0.46 mm = 0.46 × 10⁻³ m
Now to calculate the maximum length
for the deformation, we use the following relation;
= [ Δl × E × π × D² ] / 4F
so we substitute our values into the formula
= [ (0.46 × 10⁻³) × (124 × 10⁹) × π × (4.2 × 10⁻³)² ] / ( 4 × 1810 )
= 3161.025289 / 7240
= 0.4366 m
Therefore, the maximum length of the specimen before deformation is 0.4366 m
Answer:
A safety margin is the space left between your vehicle and the next to provide room, time and visibility at every instant
Explanation:
A safety margin is defined as an allowance given between your vehicle and the next vehicle in front to provide enough room, visibility and time to move in a safe manner to prevent the occurrence of an accident at anytime the frontal vehicle suddenly stops or slows down
Safety margins help minimize risks in the following way
1) A common knowledge of safety margins, improves predictability among road users, thereby minimizing the risk traffic accidents caused due to late communication
2) The use of safety margins helps minimize the risk due to a change in driving conditions such as when the road becomes more slippery from being covered with fluid that is being wetted
3) Safety margin can help prevent the occurrence of an accident between vehicles due to failure of a car system, such as a punctured tire or failed breaking system
4) Safety margin helps to protect road users from the introduction of obstacles on the main roads such as ongoing road construction, broken down vehicles, road blockage by vehicles involved in an accident etc
5) Safety margin help protect road users from being involved in an accident due to the loss of driving focus of the driver of the frontal vehicle
The modern hydraulic lifts make use of biodegradable fluid to transmit hydraulic power
<em>Question: The options are left out in the question. The details and facts about the modern hydraulic lift are presented here</em>
<em />
Details about the modern hydraulic lifts include;
The development of the modern hydraulic occurred in the Industrial Revolution to perform task done previously by steam powered elevators
The power of the hydraulic lift come from the hydraulic cylinder known as the actuator, which in turn is powered by pressurized hydraulic fluid such as oil
The hydraulic fluid is pushed by a piston rod through which energy is capable of being transferred, such that the applied force is multiplied, to provide more power for lifting
<u>Facts about the modern hydraulic lifts include;</u>
- The dry motor in the modern hydraulic lift is more efficient and consumes 20% less energy
- It comprises of valves that are controlled electronically such that the response is much rapid and the energy consumption is reduced by a further 20%
- The cars used in the modern lift are lighter, as well as the slings, which reduces the power usage by 20%
- It makes use of chemicals which are environmentally friendly as hydraulic fluid
- The flash point of the fluid used is higher, as well as it posses 50% lower compressibility as well elasticity
Learn more here:
brainly.com/question/16942803