Answer:
With a tape measure.
Explanation:
We can use a big tape measure, this tape is in the market and we can use the one with the proper length that lets us measure different sections of the total length of the pool.
When someone is holding something that has been struck or splashed by lightning, contact damage occurs.
We need additional information concerning lightning and injuries in order to identify the solution.
<h3>What types of injuries are brought on by lightning?</h3>
- Lightning is the name for a natural electrical discharge that occurs quickly and with a dazzling flash.
- It has a tremendous amount of energy.
- Lightning-related injuries can be divided into three categories: direct strikes, side splashes, and contact injuries.
- When someone is struck by lightning directly, they can get direct injury.
- When a current splashes from a neighboring object, it is called a side splash.
- When someone touches a lightning-hit object, contact harm results.
In light of this, we can say that contact injuries happen when a person is holding an object that has been struck by lightning or splashed by it.
Learn more about the lightning and harm here:
brainly.com/question/28055828
#SPJ1
Answer:
P = (2 + 3) * V where V is their initial speed (total momentum)
P = 2 * 10 + 3 * Vx where Vx here would be V3
If the initial momentum is not known how can one determine the final velocity of the 3 kg obj.
Also work depends on the sum of the velocities
W (initial) = 1/2 (2 + 3) V^2 the initial kinetic energy
W (final) = 1/2 * 2 * V2^2 + 1/2 * 3 * V3^2
It appears that more information is required for this problem
Answer:
Gravitational Force.
Explanation:
Being one of the fundamental forces of nature, gravitational force is the weakest but has an infinite range. It is always attractive and acts between any two pieces of matter in nature.
Answer:
A) t = 4.40 s
, B) v = 23.86 m / s
, c) v_y = - 43.12 m / s
, D) v = 49.28 m/s
Explanation:
This is a projectile throwing exercise,
A) To know the time of the stone in the air, let's find the time it takes to reach the floor
y = y₀ +
t - ½ g t²
as the stone is thrown horizontally v_{oy} = 0
y = y₀ - ½ g t²
0 = y₀ - ½ g t²
t = √ (2 y₀ / g)
t = √ (2 95 / 9.8)
t = 4.40 s
B) what is the horizontal velocity of the body
v = x / t
v = 105 / 4.40
v = 23.86 m / s
C) The vertical speed when it touches the ground
v_y =
- g t
v_y = 0 - 9.8 4.40
v_y = - 43.12 m / s
the negative sign indicates that the speed is down
D) total velocity just hitting the ground
v = vₓ i ^ + v_y j ^
v = 23.86 i ^ - 43.12 j ^
Let's use Pythagoras' theorem to find the modulus
v = √ (vₓ² + v_y²)
v = √ (23.86² + 43.12²)
v = 49.28 m / s
we use trigonometry for the angle
tan θ = v_y / vₓ
θ = tan⁻¹ (-43.12 / 23.86)
θ = -61