The magnitude of the kinetic friction force, ƒk, on an object is. Where μk is called the kinetic friction coefficient and |FN| is the magnitude of the normal force of the surface on the sliding object. The kinetic friction coefficient is entirely determined by the materials of the sliding surfaces. hope it helps
Answer:
option A.
Explanation:
The correct answer is option A.
Nuclear power plant are used to generate electricity. In these power plant energy is produced by fission in the nuclear reactor.
The most common fuel used for the production of energy is U-235.
Control rods are inserted in the reactor if energy requirement is less and when energy requirement is large Control rods are remove. Hence, we can say that control rod can be used to regulate the reaction in the nuclear power plant.
Answer:
Gravitational attraction of the sun.
Explanation:
Gravity is an attractive force. Any two masses will exert an attractive force on the other according to Newton's law of universal gravitation. The more massive the objects, the stronger the force. The sun, as you can probably guess, is pretty massive - 330,000 times more than Earth, and 1,048 time more than Jupiter, our solar system's largest planet. Just like man-made satellites around Earth, the planets in our solar system are constant process of "falling" around the sun, locked in their orbits by its mass, but slowing dramatically in their orbital velocity the further away they are.
Answer:
According to our principle, when an object is slowing down, the acceleration is in the opposite direction as the velocity. Thus, this object has a negative acceleration. In Example D, the object is moving in the negative direction (i.e., has a negative velocity) and is speeding up.
Explanation:
Answer:
El peso de la persona B es la mitad del peso de la persona A.
Explanation:
El peso de la persona B puede calcularse con la siguiente ecuación:
(1)
En donde:
: es la masa de la persona B
g: es la gravedad
Dado que la persona B tiene la mitad de la masa de la persona A, tenemos:
(2)
En donde:
: es la masa de la persona A
Al introducir la ecuación (2) en (1) nos queda:
(3)
Sabemos que el peso de la persona A está dado por:
(4)
Entonces, al introducir la ecuación (4) en (3) tenemos:
Por lo tanto, el peso de la persona B es la mitad del peso de la persona A.
Espero que te sea de utilidad!