Answer:
The balanced equation is 3NaBr+1H3PO4 ----> 1Na3PO4 + 3HBr
This is a double replacement because you are switching both the Na and the Hydrogen.
Explanation:
Able to be hammered or pressed permanently out of shape without breaking or cracking.
Answer:
a♦1 E_average = n E₀ / 2
, b) E_average= infinity
Explanation:
The energy values form an arithmetic series, whose sum is
S = n (a₁ + aₙ) / 2 = n (2a₁ + (n-1) r)/ 2
Where n is the number of terms, a₁ is the first term, aₙ the last term and r is the difference between two consecutive numbers in the series
r = 2E₀ - 0 = 2E₀
Therefore the sum is
S = n (0 + n E₀) / 2
S = n² E₀ / 2
The average value is
E_average = S / n
E_average = n E₀ / 2
b) the case of harmonic oscillation
We have two possibilities.
- if we take a finite number and terms gives the same previous value
- If we take an infinite number of fears the series gives infinity and the average is also infinite
E_average= infinity
The working equation would be Vf (final velocity) = Vi
(initial velocity) + a (acceleration) t (time). The given data are the initial
velocity (5.0 m/s), acceleration (-2.5 m/s^2, negative since it is said to
decelerate) and the final velocity (0 m/s, since it will put to a stop). The
time would be 2 seconds.
Answer:
D)
Explanation:
The Period-Luminosity relationship tells us that luminosity increases with the period, and of course the more luminosity a star has the more far away they can be seen, so from this we know that:
A) False since lower luminosities can be observed when they are close.
B) False since longer periods means higher luminosities
C) False since lower luminosities can be observed when they are close.
D) True: Variable stars with shorter periods have lower luminosities, so they can only be observed when they are close.