Intermolecular forces in solids are strongest than in liquids and gases. Gases have the least strong intermolecular forces. Intermolecular forces are weak and are significant over short distances between molecules (determined by Coulomb’s law). The farther away from the molecules the weaker the intermolecular forces. Since molecules in solids are the closest, the intermolecular force between them as the strongest. Conversely, since gas molecules are farthest apart, the intermolecular forces between them are the weakest.
Answer:
2.82 g
Explanation:
Step 1: Write the balanced precipitation reaction
3 Ba(NO₃)₂ (aq) + Al₂(SO₄)₃ (aq) ⇒ 3 BaSO₄(s) + 2 Al(NO₃)₃(aq)
Step 2: Calculate the reacting moles of Ba(NO₃)₂
45.0 mL (0.0450 L) of 0.548 M Ba(NO₃)₂ react.
0.0450 L × 0.548 mol/L = 0.0247 mol
Step 3: Calculate the moles of Al₂(SO₄)₃ that react with 0.0247 moles of Ba(NO₃)₂
The molar ratio of Ba(NO₃)₂ to Al₂(SO₄)₃ is 3:1. The reacting moles of Al₂(SO₄)₃ are 1/3 × 0.0247 mol = 8.23 × 10⁻³ mol
Step 4: Calculate the mass corresponding to 8.23 × 10⁻³ moles of Al₂(SO₄)₃
The molar mass of Al₂(SO₄)₃ is 342.2 g/mol.
8.23 × 10⁻³ mol × 342.2 g/mol = 2.82 g
When you pass around the side dishes at this year's Thanksgiving feast, here's one thing to be thankful for: you're eating mashed potatoes instead of mashed paper towels. But if you were chewing on the towels instead of the spuds, would you even know it.