1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andreev551 [17]
3 years ago
15

The engine of a 1520-kg automobile has a power rating of 75 kW. Determine the time required to accelerate this car from rest to

a speed of 100 km/h at full power on a level road. Is your answer realistic?
Physics
1 answer:
LUCKY_DIMON [66]3 years ago
3 0

Answer:

t=15.68 s

Explanation:

Given that

m = 1520 kg

P =75 KW

We know that

Power  ,P = F .v

F=force

v=velocity

v= 100 km/h

v=\dfrac{1000}{3600}\times 100\ m/s

v=27.77 m/s

75 x 1000  = F x 27.77

F= \dfrac{75000}{27.77}\ N

F= 2700.75 N

F= m a

m=mass

a=acceleration

2700.75 = 1520 x a

 a=1.77 m/s²

time t given as

v= u + a t

27.77 = 0 + 1.77 x t

t=15.68 s

You might be interested in
A charged wire of negligible thickness has length 2L units and has a linear charge density λ. Consider the electric field E-vect
Stels [109]

Answer:

E=2K\lambda d\dfrac{L }{d^2\sqrt{L^2+d^2}}

Explanation:

Given that

Length= 2L

Linear charge density=λ

Distance= d

K=1/(4πε)

The electric field at point P

E=2K\int_{0}^{L}\dfrac{\lambda }{r^2}dx\ sin\theta

sin\theta =\dfrac{d}{\sqrt{d^2+x^2}}

r^2=d^2+x^2

So

E=2K\lambda d\int_{0}^{L}\dfrac{dx }{(x^2+d^2)^{\frac{3}{2}}}

Now by integrating above equation

E=2K\lambda d\dfrac{L }{d^2\sqrt{L^2+d^2}}

4 0
3 years ago
Which of the following characteristics do all unicellular organisms share?
Fed [463]

Answer:

Asexual production they can be eukaryotes or prokaryotes

Explanation:

8 0
3 years ago
In a double‑slit interference experiment, the wavelength is lambda=487 nm , the slit separation is d=0.200 mm , and the screen i
pantera1 [17]

Answer:

Δx = 4.68 x 10⁻³ m = 4.68 mm

Explanation:

The distance between the consecutive maxima, in Young's Double Slit Experiment is given bu the following formula:

Δx = λD/d

So, the distance between the eighth order maximum and the fourth order maximum on the screen will be given as:

Δx = 4λD/d

where,

Δx = distance between eighth order maximum and fourth order maximum=?

λ = wavelength = 487 nm = 4.87 x 10⁻⁷ m

d = slit separation = 0.2 mm = 2 x 10⁻⁴ m

D = Distance between slits and screen = 48 cm = 0.48 m

Therefore,

Δx = (4)(4.87 x 10⁻⁷ m)(0.48 m)/(2 x 10⁻⁴ m)

<u>Δx = 4.68 x 10⁻³ m = 4.68 mm</u>

5 0
3 years ago
PLEASE HELP TIMED
Igoryamba

Radio waves have longer wavelengths and lower frequencies than microwaves.

infrared is longer wavelengths and lower frequencies than UV light

5 0
3 years ago
Read 2 more answers
In which of the two situations described is more energy transferred?
Furkat [3]

Answer:

More energy is transferred in situation A

Explanation:

Each of the situations are analyzed as follows;

Situation A

The temperature of the cup of hot chocolate = 40 °C

The temperature of the interior of the freezer in which the chocolate is placed = -20 °C

We note that at 0°C, the water in the chocolate freezes

The energy transferred by the chocolate to the freezer before freezing is given approximately as follows;

E₁ = m×c₁×ΔT₁

Where;

m = The mass of the chocolate

c₁ = The specific heat capacity of water = 4.184 kJ/(kg·K)

ΔT₁ = The change in temperature from 40 °C to 0°C

Therefore, we have;

E₁ = m×4.184×(40 - 0) = 167.360·m kJ

The heat the coffee gives to turn to ice is given as follows;

E₂ = m·H_f

Where;

H_f = The latent heat of fusion = 334 kJ/kg

∴ E₂ = m × 334 kJ/kg = 334·m kJ

The heat required to cool the frozen ice to -20 °C is given as follows;

E₃ = m·c₂·ΔT₂

Where;

c₂ = The specific heat capacity of ice = 2.108 kJ/(kg·K)

Therefore, we have;

E₃ = m × 2.108 ×(0 - (-20)) = 42.16

E₃ = 42.16·m kJ/(kg·K)

The total heat transferred = (167.360 + 334 + 42.16)·m kJ/(kg·K) = 543.52·m kJ/(kg·K)

Situation B

The temperature of the cup of hot chocolate = 90 °C

The temperature of the room in which the chocolate is placed = 25 °C

The heat transferred by the hot cup of coffee, E, is given as follows;

E = m×4.184×(90 - 25) = 271.96

∴ E = 271.96 kJ/(kg·K)

Therefore, the total heat transferred in situation A is approximately twice the heat transferred in situation B and is therefore more than the heat transferred in situation B

Energy transferred in situation A = 543.52 kJ/(kg·K)

Energy transferred in situation B = 271.96 kJ/(kg·K)

Energy transferred in situation A ≈ 2 × Energy transferred in situation B

∴ Energy transferred in situation A > Energy transferred in situation B.

3 0
3 years ago
Other questions:
  • What physical property does NOT identify a substance? A. boiling point B. pH C.solubility
    7·2 answers
  • How are the climates of coastal regions affected by the specific heat capacity of water?
    10·1 answer
  • E14. A ball rolls off a table with a horizontal velocity of 5 m/s. If
    6·1 answer
  • A maintenance worker wants to torque an engine bolt to 65.0 N m. If the torque wrench is 35cm in length, what is force applied t
    12·1 answer
  • The gravitational force acting on a lead ball is much larger than that acting on a wooden ball of the same size. Which statement
    8·1 answer
  • You connect three resistors with resistances R, 2R, and 3R in parallel. The equivalent resistance of the three resistors will ha
    9·1 answer
  • What chemical phenomenon accounts for the elasticity seen in solids?
    9·1 answer
  • Fill in the graph for 50 points
    11·2 answers
  • A stomp rocket takes 3.1 seconds to reach its maximum height.
    9·1 answer
  • (a) State and explain which of the arrangements would have the greater extension of spring(s). (b) Explain if there are any chan
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!