Answer:
The buoyant force is 3778.8 N in upward.
Explanation:
Given that,
Mass of balloon = 222 Kg
Volume = 328 m³
Density of air = 1.20 kg/m³
Density of helium = 0.179 kg/m³
We need to calculate the buoyant force acting
Using formula of buoyant force

Where,
= density of air
V = Volume of balloon
g = acceleration due to gravity
Put the value into the formula


This buoyant force is in upward direction.
Hence, The buoyant force is 3778.8 N in upward.
Answer:
Explanation:
When we apply a horizontal force of 76 N to a block, the block moves across the floor at a constant speed. So net force on the block is zero .
It implies that a force ( frictional ) acts on it which is equal to 76 N in opposite direction ( friction )
When we apply a greater force on it it starts moving with acceleration .
This time kinetic friction acts on it due to rough ground equal to 76 N .This is limiting friction ( maximum friction )
Net force on the body in later case
= 89 - 76
= 13 N
Force by ground on the block in horizontal direction = 76 N ( FRICTIONAL FORCE )
=
The correct answer to this is (A. Units Only).
It shows that there is a velocity of 35, but the units are missing.
Answer:
Net force on the block is 32 N.
Acceleration of the object is 6.4 m/s².
Explanation:
Let the acceleration of the object be
m/s².
Given:
Mass of the block is, 
Force of pull is, 
Frictional force on the block is, 
The free body diagram of the object is shown below.
From the figure, the net force in the forward direction is given as:

Now, from Newton's second law of motion, net force is equal to the product of mass and acceleration. So,

Therefore, the acceleration of the object in the forward direction is 6.4 m/s².
Folk song
(Word cap filler)