Answer:
The mass percent of aluminum sulfate in the sample is 16.18%.
Explanation:
Mass of the sample = 1.45 g

Mass of the precipitate = 0.107 g
Moles of aluminum hydroxide = 
According to reaction, 2 moles of aluminum hydroxide is obtained from 1 mole of aluminum sulfate .
Then 0.001372 moles of aluminum hydroxide will be obtained from:

Mass of 0.000686 moles of aluminum sulfate :
= 0.000686 mol × 342 g/mol = 0.2346 g
The mass percent of aluminum sulfate in the sample:

Answer:
MgSO4.7H2O
Explanation:
Let the formula for the hydrated magnesium sulphate be MgSO4.xH2O
Mass of the hydrated salt (MgSO4.xH2O) = 12.845g
Mass of anhydrous salt (MgSO4) = 6.273g
Mass of water molecule(xH2O) = Mass of the hydrated salt — Mass of anhydrous salt = 12.845 — 6.273 = 6.572g
Now,we can obtain the number of mole of water molecule present in the hydrated salt as follows:
Molar Mass of hydrated salt (MgSO4.xH2O) = 24 + 32 + (16x4) + x(2 + 16) = 24 + 32 + 64 + x(18) = 120 + 18x
Mass of xH2O/ Molar Mass of MgSO4.xH2O = Mass of water / mass of hydrated salt
18x/120 + 18x = 6.572/12.845
Cross multiply to express in linear form
18x x 12.845 = 6.572(120 + 18x)
231.21x = 788.64 + 118.296x
Collect like terms
231.21x — 118.296x = 788.64
112.914x = 788.64
Divide both side by 112.914
x = 788.64 /112.914
x = 7
Therefore the formula for the hydrated salt (MgSO4.xH2O) is MgSO4.7H2O
So,
Our conceptual plan is as follows:
g AlCl3 --> mol AlCl3 --> mol H2 --> g H2

Hope this helps!
Answer:
Earth's gravity is strong enough to hold onto its atmosphere and keep it from drifting into space.
Answer:
thats one hint. but for 1 it will produce lava
Explanation:
number 2
some of the Earth's grandest mountains are composite volcanoes--sometimes called stratovolcanoes. They are typically steep-sided, symmetrical cones of large dimension built of alternating layers of lava flows, volcanic ash, cinders, blocks, and bombs and may rise as much as 8,000 feet above their bases