1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sweet [91]
2 years ago
8

Describe how radio waves are different from sound waves.

Physics
2 answers:
Lilit [14]2 years ago
7 0

Answer:

sound and radio waves are completely different phenomena.

Explanation:

sammy [17]2 years ago
6 0
Radio waves are electromagnetic waves so therefore they can travel long distances in a vacuum. Sound waves are mechanical waves so they can’t not travel in the absence of a medium.
You might be interested in
You can use any coordinate system you like in order to solve a projectile motion problem. To demonstrate the truth of this state
posledela

Answer:

a)  y₂ = 49.1 m ,    t = 1.02 s , b)   y = 49.1 m , t= 1.02 s

Explanation:

a) We will solve this problem with the missile launch kinematic equations, to find the maximum height, at this point the vertical speed is zero

            v_{y}² = v_{oy}² - 2 g (y –yo)

The origin of the coordinate system is on the floor and the ball is thrown from a height

           y-yo = v_{oy}² /2 g
            y- 0 = 10.0²/2 9.8
            y - 0 = 5.10 m
            
The height from the ground is the height that rises from the reference system plus the depth of the ground from the reference system
             y₂ = 5.1 + 44
             y₂ = 49.1 m
Let's use the other equation to find the time
              [tex]v_{y} = v_{oy} - g t

              t = v_{oy} / g

              t = 10 / 9.8

              t = 1.02 s

b) the maximum height

            y- 44.0 = v_{y}² / 2 g

            y - 44.0 = 5.1

            y = 5.1 +44.0

            y = 49.1 m

The time is the same because it does not depend on the initial height

              t = 1.02 s

7 0
3 years ago
1.)Two objects, one of m=20,000 kg, and another of 12,500 kg, are placed at a distance of 5 meters apart. What is the force of g
Delvig [45]

1) 6.67\cdot 10^{-4} N

The force of gravitation between the two objects is given by:

F=G\frac{m_1 m_2}{r^2}

where

G=6.67\cdot 10^{-11} kg^{-1} m^{3} s^{-2} is the gravitational constant

m1 = 20,000 kg is the mass of the first object

m2 = 12,500 kg is the mass of the second object

r = 5 m is the distance between the two objects

Substituting the numbers inside the equation, we find

F=(6.67\cdot 10^{-11})\frac{(20,000 kg)(12,500 kg)}{(5 m)^2}=6.67\cdot 10^{-4} N


2)  2.7\cdot 10^{-3} N

From the formula in exercise 1), we see that the force is inversely proportional to the square of the distance:

F \sim \frac{1}{r^2}

this means that if we cut in a half the distance without changing the masses, the magnitude of the forces changes by a factor

F'\sim \frac{1}{(r/2)^2}=4 \frac{1}{r^2}=4F

So, the gravitational force increases by a factor 4. Therefore, the new force will be

F' = 4 F=4(6.67\cdot 10^{-4} N)=2.7\cdot 10^{-3} N


3)  12.5 Nm

The torque is equal to the product between the magnitude of the perpendicular force and the distance between the point of application of the force and the centre of rotation:

\tau=Fd

Where, in this case:

F = 25 N is the perpendicular force

d = 0.5 m is the distance between the force and the center

By using the equation, we find

\tau=(25 N)(0.5 m)=12.5 Nm


4) 0.049 kg m^2/s

The relationship between angular momentum (L), moment of inertia (I) and angular velocity (\omega) is:

L=I\omega

In this problem, we have

I=0.007875 kgm^2

\omega=6.28 rad/s

So, the angular momentum is

L=I\omega=(0.007875 kgm^2)(6.28 rad/s)=0.049 kg m^2/s

6 0
3 years ago
An artificial satellite is in a circular orbit around a planet of radius r= 2.05 x103 km at a distance d 310.0 km from the plane
lubasha [3.4K]

Answer:

\rho = 12580.7 kg/m^3

Explanation:

As we know that the satellite revolves around the planet then the centripetal force for the satellite is due to gravitational attraction force of the planet

So here we will have

F = \frac{GMm}{(r + h)^2}

here we have

F =\frac {mv^2}{(r+ h)}

\frac{mv^2}{r + h} = \frac{GMm}{(r + h)^2}

here we have

v = \sqrt{\frac{GM}{(r + h)}}

now we can find time period as

T = \frac{2\pi (r + h)}{v}

T = \frac{2\pi (2.05 \times 10^6 + 310 \times 10^3)}{\sqrt{\frac{GM}{(r + h)}}}

1.15 \times 3600 = \frac{2\pi (2.05 \times 10^6 + 310 \times 10^3)}{\sqrt{\frac{(6.67 \times 10^{-11})(M)}{(2.05 \times 10^6 + 310 \times 10^3)}}}

M = 4.54 \times 10^{23} kg

Now the density is given as

\rho = \frac{M}{\frac{4}{3}\pi r^3}

\rho = \frac{4.54 \times 10^{23}}{\frac{4}[3}\pi(2.05 \times 10^6)^3}

\rho = 12580.7 kg/m^3

8 0
3 years ago
A loudspeaker in a parked car is producing sound whose frequency is 20 510 Hz. A healthy young person with normal hearing is sta
Vsevolod [243]

Answer:

The car must be moving away from the person.

Explanation:

From Doppler's Effect, we know that when a sound source moves towards a stationary observer, the apparent frequency of that sound increases. While the apparent frequency decreases if the source moves away from the stationary observer.

The audible range of frequencies for a human ear is 20 Hz to 20000 Hz. Therefore, in order for the sound of a loud speaker to be audible for the person, the frequency must decrease below 20000 Hz.

<u>Due to this reason, the car must be moving away from the person.</u>

4 0
3 years ago
James decides to walk home from school today. He lives 3 miles from school and can walk home in 45 minutes. At what rate is Jame
Kaylis [27]
B 1 mile/15 minutes is the right one
3 0
3 years ago
Other questions:
  • Teams red and blue are having a tug-of-war. According to Newton's third law, the force with which the red team pulls on the blue
    5·1 answer
  • A man has a mass of 110kg . what is his weight?
    7·2 answers
  • URGENT HELP PLEASE WILL AWARD BRAINLIEST!!!!!
    15·1 answer
  • If I finished my growth spurt, will I still continue to grow taller? (I’m a 14 year old male by the way)
    15·2 answers
  • A 1.00-kmkm length of power line carries a total charge of 230 mCmC distributed uniformly over its length. Find the magnitude of
    13·1 answer
  • You fill two balloons with gas, one with hydrogen and one with carbon dioxide. You hold a match to each balloon. The hydrogen ba
    11·1 answer
  • How does space promote science education
    13·1 answer
  • Explain how a fish is able to enjoy 180° field of view when in a pond.<br>​
    6·1 answer
  • A 12 V battery is connected across a device with variable resistance. As the resistance of the device increases, determine wheth
    7·1 answer
  • Please, can somebody help me with this project? I'll give brainlest for the best answer! (Do not answer if you don't know or onl
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!