1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexira [117]
3 years ago
13

A 1.00-kmkm length of power line carries a total charge of 230 mCmC distributed uniformly over its length. Find the magnitude of

the electric field 65.1 cmcm from the axis of the power line, and not near either end (staying away from the ends means you can approximate the field as that of an infinitely long wire). Express your answer with the appropriate units.
Physics
1 answer:
drek231 [11]3 years ago
5 0

Answer:

E = 6.38\times 10^6~N/C

Explanation:

The question states that we can approximate the line as an infinite wire. In that case, the electric field can be found by Gauss' Law.

We should draw an imaginary cylindrical surface with an arbitrary height, h, around the wire. The radius of the cylinder should be equal to 65.1 cm.

Gauss' Law:

\int \vec{E}d\vec{a} = \frac{Q_{enc}}{\epsilon_0}

The integral in the left-hand side is not to be taken, because we know the area of the cylinder. The enclosed charge in the right-hand side is equal to the charge of the portion of the wire inside the imaginary surface.

The charge density of the wire is

\lambda = \frac{Q}{L} = \frac{230 \times 10^{-3}}{1000} = 2.3 \times 10^{-4}

The charge enclosed by the imaginary surface is

Q_{enc} =  \lambda h = 2.3\times 10^{-4}h

Finally, Gauss' Law yields

E2\pi rh = \frac{\lambda h}{\epsilon_0}\\E = \frac{\lambda}{2\pi \epsilon_0r} = \frac{2.3 \times 10^{-4}}{2\pi\epsilon_0(65.1\times 10^{-2})} = 6.38\times 10^6~N/C

You might be interested in
640 nanometer setara dengan​
lidiya [134]

Answer:

640 nanometer setara dengan​ 6.4e-7 meter

7 0
2 years ago
With your hand parallel to the floor and your palm upright, you lower a 3-kg book downward. If the force exerted on the book by
lara31 [8.8K]

According to the net force, the acceleration of the book is 16.47 m/s².

We need to know about force to solve this problem. According to second Newton's Law, the force applied to an object will be proportional to mass and acceleration. Hence, it can be written as

∑F = m . a

where F is force, m is mass and a is acceleration

From the question above, we know that

m = 3 kg

g = 9.8 m/s²

F1 = 20 N

Find the net force

∑F = F1 + W

∑F = 20 + m . g

∑F = 20 + 3 . 9.8

∑F = 20 + 29.4

∑F = 49.4 N

Find the acceleration

∑F = m . a

49.4 = 3 . a

a = 16.47 m/s²

Find more on force at: brainly.com/question/25239010

#SPJ4

7 0
1 year ago
A scientist heats flexible container full of neon gas .what will most likely happen to the container as the gas absorbs heat
Ilia_Sergeevich [38]
As the container starts to heat up, so will the neon gas. Heat is nothing but energy, and when you add energy to a gas, it will start vibrating much faster and hit the edges of the container at a higher rate and a faster velocity. Therefore, it's possible to deduce that the container will most likely rupture and/or "explode". 
4 0
3 years ago
Read 2 more answers
In order for work to take place the energy present must be related to the movement of the object.
kaheart [24]

This is another one of those muddy misleading questions, followed by
a muddy group of choices from which an answer must be selected.

a).  is absurd.  There's no such thing as a "balanced force", only
a balanced group of forces.

b).  is probably the choice the question is aiming for.

c).  is not so.  The engines of an airplane do plenty of work lifting the plane
off the ground, although the force of the engines is never directed upward.

d).  is really awkward.  The object's motion is almost never the cause of the force.
The force is almost always the cause of the object's motion.

Now for the big 800-lb gorilla in the room:  No moving object needs to be involved
in order for energy to be flowing or work to be getting done.

-- A radio wave radiates through space.  Straighten out a wire coat-hanger and
stick it up in the air where the radio wave can pass by it.  Electrical current flows
through the wire, and you can drain the electrical energy out the bottom of it.  

-- A light bulb is shining.  Some distance away, something it's shining on
gets warm, because of the heat energy that has shot across to it from the
light bulb and soaked into it.

-- A lightning bolt jumps from the ground to a passing cloud.  Or, if you feel
more comfortable with it, a lightning bolt jumps from a cloud to the ground.
It doesn't matter.  Either way, there's enough energy splashing around to
ignite houses, zap TVs and computers, melt concrete, vaporize water, and
light up a city.  Although nothing is moving.

5 0
3 years ago
A person sitting on a pier observes incoming waves that have a sinusoidal form with a distance of 2.5 m between the crests. Of a
Doss [256]

Answer:

Part(a): The frequency is \bf{0.2~Hz}.

Part(b): The speed of the wave is \bf{0.5~m/s}.

Explanation:

Given:

The distance between the crests of the wave, d = 2.5~m.

The time required for the wave to laps against the pier, t = 5.0~s

The distance between any two crests of a wave is known as the wavelength of the wave. So the wavelength of the wave is \lambda = 2.5~m.

Also, the time required for the wave for each laps is the time period of oscillation and it is given by T = 5.0~s.

Part(a):

The relation between the frequency and time period is given by

\nu = \dfrac{1}{T}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(1)

Substituting the value of T in equation (1), we have

\nu &=& \dfrac{1}{5.0~s}\\~~~&=& 0.2~Hz

Part(b):

The relation between the velocity of a wave to its frequency is given by

v = \nu \lambda~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(2)

Substituting the value of \nu and \lambda in equation (2), we have

v &=& (0.2~Hz)(2.5~m)\\~~~&=& 0.5~m/s

5 0
3 years ago
Other questions:
  • What causes the formation of ocean currents?
    7·1 answer
  • A singly ionized helium atom is in the ground state. It absorbs energy and makes a transition to the n = 3 excited state. The io
    8·1 answer
  • Traveler A starts from rest at a constant acceleration of 6 m/s^2. Two seconds later, traveler B starts with an initial velocity
    15·1 answer
  • 1. A car with a mass of 1,500 kilograms is moving around a circular curve at a uniform velocity of 16 m/s. The curve has a radiu
    7·2 answers
  • Mr. Ben drove from Town A to Town B. For the first 3 h, he traveled at an average speed of
    9·1 answer
  • What two factors exert the greatest influence over a terrestrial biome?
    12·1 answer
  • A sphere with a radius of 15 cm rolls on a level surface with a constant angular speed of 10 rad/s. To what height on a 30° incl
    14·1 answer
  • The force that contributed to the formation of planets, determines the motion of bodies in the solar system, and pulls objects t
    6·1 answer
  • The equation for the chemical reaction shown is not balanced. What number should replace the question mark to balance this equat
    9·1 answer
  • An LR circuit contains an ideal 60-V battery, a 51-H inductor having no resistance, a 21-Ω resistor, and a switch S, all in ser
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!