Answer:
We'll have 8.0 moles Fe3O4 and 4.0 moles CO2
Explanation:
Step 1: data given
Number of moles Fe2O3 = 12.0 moles
Number of moles CO = 12.0 moles
Step 2: The balanced equation
3Fe2O3 +CO → 2Fe3O4 + CO2
Step 3: Calculate the limiting reactant
For 3 moles Fe2O3 we need 1 mol CO to produce 2 moles Fe3O4 and 1 mol CO2
Fe2O3 is the limiting reactant. It will completely be consumed (12.0 moles).
CO is in excess. There will react 12.0 / 3 = 4.0 moles
There will remain 12.0 - 4.0 = 8.0 moles
Step 4: Calculate moles products
For 3 moles Fe2O3 we need 1 mol CO to produce 2 moles Fe3O4 and 1 mol CO2
For 12.0 moles Fe2O3 we'll have 2/3 * 12.0 = 8.0 moles Fe3O4
For 12.0 moles Fe2O3 we'll have 12.0 / 3 = 4.0 moles CO2
We'll have 8.0 moles Fe3O4 and 4.0 moles CO2
Answer:
[H₃O⁺] = 2.63×10⁻¹⁰ M
As pH = 9.57, the solution is basic
Explanation:
We must know this knowledge:
[OH⁻] . [H₃O⁺] = 1×10⁻¹⁴
3.8×10⁻⁵ . [H₃O⁺] = 1×10⁻¹⁴
[H₃O⁺] = 1×10⁻¹⁴ / 3.8×10⁻⁵ → 2.63×10⁻¹⁰ M
Let's determine the pH to state if the solution is acidic or basic
pH < 7 → acidic ; pH > 7 → basi
pH = - log [H₃O⁺]
pH = - log 2.63×10⁻¹⁰ → 9.57
Answer:
We would need 10 mL of the concentrated CaCl₂ stock solution, and 30 mL of water.
Explanation:
To solve the question asked we can use the C₁V₁=C₂V₂ equation, where:
We <u>solve for V₁</u>:
We would need 10 mL of the concentrated CaCl₂ stock solution, and (40-10) 30 mL of water.
Answer:its the thrid one i think
Explanation: