Answer:

Explanation:
Hello!
In this case, considering that the Gay-Lussac's law allows us to relate the temperature-pressure problems as directly proportional relationships:

Thus, for the initial pressure and temperature in kelvins the final temperature in kelvins, we compute the final pressure as:

Best regards!
The balanced chemical equation is :
5P₄ + 36OH → 12HPO₃⁻² (aq) + 8PH₃ (acidic)
Here the oxidation number of P changed from 0 to -3 in PH₃ and increases from 0 to +3 in HPO₃⁻². When P₄ changes to PH₃ reduction reaction is taking place as there is addition of hydrogen and when P₄ changes to HPO₃⁻² oxidation takes place as there is addition of oxygen.
Thus clearly both reduction and oxidation are taking place.
Thus, we can infer that here P₄ is both oxidizing as well as reducing agent.
To know more about oxidation number here:
brainly.com/question/13182308
#SPJ4
PH + pOH = 14
pH = 14 - pOH
pH = 14 - 8.7
pH = 5,3
This solution is <u>acidic</u>.
If pH<7 - acidic
If pH=7 - neutral
If pH>7 - basic
Answer:
The Net reaction is
-

-

-
Explanation:
From the Question we are told that the buffers are
and 
When NaOH is added the Net ionic reaction would be
-

-

-
There are 158.4 grams of CO2 in 3.6 mol of CO2.
<h3>HOW TO CALCULATE MASS?</h3>
The mass of a substance can be calculated by multiplying the number of moles of the substance by its molar mass. That is;
mass of CO2 = no. of moles × molar mass
According to this question, there are 3.6 moles of CO2.
mass of CO2 = 3.6 moles × 44g/mol
mass of CO2 = 158.4g.
Therefore, there are 158.4 grams of CO2 in 3.6 mol of CO2
Learn more about mass at: brainly.com/question/15959704