Answer: The molar enthalpy change is 73.04 kJ/mol
Explanation:

moles of HCl= 
As NaOH is in excess 0.0415 moles of HCl reacts with 0.0415 moles of NaOH.
volume of water = 100.0 ml + 50.0 ml = 150.0 ml
density of water = 1.0 g/ml
mass of water = 

q = heat released
m = mass = 150.0 g
c = specific heat = 
= change in temperature = 


Thus 0.0415 mol of HCl produces heat = 3031.3 J
1 mol of HCL produces heat = 
Thus molar enthalpy change is 73.04 kJ/mol
Answer:
Option (B) 6270J
Explanation:
The following were obtained from the question:
M = 100g
T1 = 30°C
T2 = 45°C
ΔT = 45 —30 = 15°C
C = 4.18J/g°C
Q=?
Q = MCΔT
Q = 100 x 4.18 x 15
Q = 6270J
Therefore, the total amount of heat absorbed is 6270J
Answer:
E. All of the above are true.
Explanation:
<em>Which of the following statements is TRUE?</em>
<em>A. State functions do not depend on the path taken to arrive at a particular state.</em> TRUE. State functions like enthalpy (ΔH) and internal energy (ΔE) do not depend on the trajectory, but on the initial and final state.
<em>B. Energy is neither created nor destroyed, excluding nuclear reactions.</em> TRUE. Only in nuclear reactions can energy (E) can be transformed in matter (m) and vice-versa according to Einstein equation: E = m . c² (c is the speed of light).
<em>C. ΔHrx can be determined using constant pressure calorimetry.</em> TRUE. The enthalpy of reaction is the heat involved at constant pressure.
<em>D. ΔErx can be determined using constant volume calorimetry.</em> TRUE. The internal energy of reaction is the heat involved at constant volume.