Answer:
V = 3.17 m/s
Explanation:
Given
Mass of the professor m = 85.0 kg
Angle of the ramp θ = 30.0°
Length travelled L = 2.50 m
Force applied F = 600 N
Initial Speed u = 2.00 m/s
Solution
Work = Change in kinetic energy

A is the answer you can believe me
Answer:
(a) p = 3.4 kg-m/s (b) 37.78 N.
Explanation:
Mass of a basketball, m = 0.4 kg
Initial velocity of the ball, u = -5.7 m/s (as it comes down so it is negative)
It rebounds upward at a speed of 2.8 m/s (as it rebounds so positive)
(a) Change in momentum = final momentum - initial momentum
p = m(v-u)
p = 0.4 (2.8-(-5.7))
p = 3.4 kg-m/s
(b) Impulse = change in momentum
Ft = 3.4
We have, t = 0.09 s

Hence, this is the required solution.
Normally a storm surge.
Experience: I lived through Andrew and Wilma
Answer: hope it helps you...❤❤❤❤
Explanation: If your values have dimensions like time, length, temperature, etc, then if the dimensions are not the same then the values are not the same. So a “dimensionally wrong equation” is always false and cannot represent a correct physical relation.
No, not necessarily.
For instance, Newton’s 2nd law is F=p˙ , or the sum of the applied forces on a body is equal to its time rate of change of its momentum. This is dimensionally correct, and a correct physical relation. It’s fine.
But take a look at this (incorrect) equation for the force of gravity:
F=−G(m+M)Mm√|r|3r
It has all the nice properties you’d expect: It’s dimensionally correct (assuming the standard traditional value for G ), it’s attractive, it’s symmetric in the masses, it’s inverse-square, etc. But it doesn’t correspond to a real, physical force.
It’s a counter-example to the claim that a dimensionally correct equation is necessarily a correct physical relation.
A simpler counter example is 1=2 . It is stating the equality of two dimensionless numbers. It is trivially dimensionally correct. But it is false.