Answer:
a) 17.086m
b) 0.1671 m
Explanation:
Given data: speed of water through the hose = 1.81 m/s
through the nozzle = 18.3 m/s
We know that maximum height of an object with upward velocity v is given by,
a) H = v^2/2g
where H is the maximum height water emerges
= 18.3^2/(2×9.8) = 17.086 m answer
b) Again,
H = v^2/2g
= 1.81^2/(2×9.8) = 0.1671 m
The answer is b because the sun's surface temperature is 5,778 K.
Answer: 16.3 seconds
Explanation: Given that the
Initial velocity U = 80 ft/s
Let's first calculate the maximum height reached by using third equation of motion.
V^2 = U^2 - 2gH
Where V = final velocity and H = maximum height.
Since the toy is moving against the gravity, g will be negative.
At maximum height, V = 0
0 = 80^2 - 2 × 9.81 × H
6400 = 19.62H
H = 6400/19.62
H = 326.2
Let's us second equation of motion to find time.
H = Ut - 1/2gt^2
Let assume that the ball is dropped from the maximum height. Then,
U = 0. The equation will be reduced to
H = 1/2gt^2
326.2 = 1/2 × 9.81 × t^2
326.2 = 4.905t^2
t^2 = 326.2/4.905
t = sqrt( 66.5 )
t = 8.15 seconds
The time it will take for the rocket to return to ground level will be 2t.
That is, 2 × 8.15 = 16.3 seconds
Answer:
two people who are not going to be able to make it to class today because of the day and then I will be there at the house and then we can go
I already answered this quesiton. The fact is that there are only two kind of poles and since the two taped poles of the magnets labeled A and B attracts one to each other, we know that the two taped poles of the first two magnets are oppsosite.
Then, the taped pole of the third magnet has to be equal to one of the first two taped poles and opposite to the other of the first two taped poles.
That drives you to conclude (predict) that when she brings the taped end of the third magnet (magnet C) near each of the first two magntes, in one case they will attract each other and in the other case they will repele mutually.