1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ioda
3 years ago
6

A student, starting from rest, slides down a water slide. On the way down, a kinetic frictional force (a nonconservative force)

acts on her. The student has a mass of 73 kg, and the height of the water slide is 11.8 m. If the kinetic frictional force does -5.5 × 103 J of work, how fast is the student going at the bottom of the slide?
Physics
1 answer:
salantis [7]3 years ago
3 0

Answer:

<em>The velocity with which the student goes down the bottom of glide is 12.48m/s.</em>

Explanation:

The Non conservative force is defined as a force which do not store energy or get he energy dissipate the energy from the system as the system progress with the motion.

Given are

   <em>  mass of the student 73 kg</em>

<em>      height of water glide 11.8 m</em>

<em>      work done as -5.5*10³ J</em>

Have to find speed at which the student goes down the glide.

According to<em> Law of Conservation of energy</em>,

          K.E =P.E+Work Done

 mv²/2=mgh +W

Rearranging the above eqn for v

v = √2(gh+W/m)

Substituting values,

V =  12.48 m/s.

<em>The velocity with which the student goes down the bottom of glide is 12.48m/s.</em>

 

You might be interested in
The CEO, ellen misk, left her martian office but accidentally left a cylindricall can of coke (3.1 inches in diameter, 5.42 inch
iren2701 [21]

Answer:

Specific Gravity = 0.378

Explanation:

First, we will find the force exerted by the can on the table. This force will be equal to the weight of the can:

Pressure = Force/Area = Weight/Area

Weight = Pressure*Area

where,

Area = πdiameter²/4 = π[(3.1 in)(0.0254 m/1 in)]²/4 = 4.8 x 10⁻³ m²

Weight = (510 N/m²)(4.8 x 10⁻³ m²)

Weight = 2.48 N

Now, the weight is given as:

Weight = mg

2.48 N = m(9.8 m/s²)

m = (2.48 N)/(9.8 m/s²)

m = 0.25 kg

Now, we calculate volume of can:

Volume = (Area)(Height) = (4.8 x 10⁻³ m²)(5.42 in)(0.0254 m/1 in)

Volume = 6.6 x 10⁻⁴ m³

Hence, the density of can will be:

Density of Can = m/Volume = 0.25 kg/6.6 x 10⁻⁴ m³

Density of Can = 378.32 kg/m³

So, the specific gravity of Can will be:

Specific Gravity = Density of Can/Density of Water

Specific Gravity = (378.32 kg/m³)/(1000 kg/m³)

<u>Specific Gravity = 0.378</u>

8 0
2 years ago
Hello<br>what is zenith define it ?​
sertanlavr [38]

Answer:

hi,

When one stands at a particular place, the point in the sky directly above the head is called Zenith.

Explanation:

hope it helps(≡^∇^≡)

good day

thank u ✅

4 0
2 years ago
A worker assigned to the restoration of the Washington Monument is checking the condition of the stone at the very top of the mo
Svetllana [295]

Answer:

The gravitational potential energy of the nickel at the top of the monument is 8.29 J.

Explanation:

We can find the gravitational potential energy using the following  formula.

GPE=mgh

Identifying given information.

The nickel has a mass m=0.005 \,kg, and it is a the top of Washington Monument.

The Washington Monument has a height of h=555 \, ft, thus we need to find the equivalence in meters using unit conversion in  order to find the gravitational potential energy.

Converting from feet to meters.

Using the conversion factor 1 m = 3.28 ft, we have

h = 555 \, ft \times \cfrac{1 \, m}{3.28 \, ft}

That give u s

h = 169.2 \, m

Finding Gravitational Potential Energy.

We can replace the height and mass on the formula

GPE=mgh

And we get

GPE=(0.005)(9.8)(169.2) \, J

\boxed{GPE=8.29 \,J}

The gravitational potential energy of the nickel at the top of the monument is 8.29 J.

7 0
3 years ago
Read 2 more answers
Ask Your Teacher A basketball player shoots toward a basket 5.8 m away and 3.0 m above the floor. If the ball is released 1.7 m
const2013 [10]

Answer:

The answer to your question is    vo = 5.43 m/s

Explanation:

Data

distance = d= 5.8 m

height = 3 m

height 2 = 1.7 m

angle = 60°

vo = ?

g = 9.81 m/s²

Formula

              hmax = vo²sinФ/ 2g

Solve for vo²

              vo² = 2ghmax / sinФ

Substitution

              vo² = 2(9.81)(3 - 1.7) / 0.866

Simplification

              vo² = 19.62(1.3) / 0.866

              vo² = 25.51 / 0.866

              vo² = 29.45

Result

              vo = 5.43 m/s

               

5 0
3 years ago
A force acting over a large area will exert less pressure per square inch than the same force acting over a smaller area.
babunello [35]

Answer:

True

Explanation:

Pressure is defined as:

p=\frac{F}{A}

where

F is the magnitude of the force perpendicular to the surface

A is the surface

Therefore, pressure is inversely proportional to the area of the surface:

p\propto \frac{1}{A}

this means that, assuming that the forces in the two situations (which have same magnitude) are both applied perpendicular to the surface, the force exerted over the smaller area will exert a greater pressure. Hence, the statement"

<em>"A force acting over a large area will exert less pressure per square inch than the same force acting over a smaller area"</em>

is true.

8 0
2 years ago
Other questions:
  • Kevin can text 44 words in 8 minutes. At this rate, how many minutes would it take
    15·1 answer
  • What factor determines how long a star lives?
    6·2 answers
  • Which equations represent the relationship between wavelength and frequency for a sound wave?
    10·1 answer
  • How do scientists use models to make predictions?
    14·1 answer
  • Charge is uniformly distributed throughout a spherical insulating volume of radius R=4.00 cm . The charge per unit volume is −6.
    14·1 answer
  • A Dodge Stealth is driving at 70 mph on a highway. It passes a BMW going the same direction. The BMW is moving 7 mph backward re
    6·1 answer
  • A ball is given an initial velocity of 160ft/s straight up. Use g = -32ft/s^2
    9·1 answer
  • Atoms of the same element with varying number of neutrons are called
    10·1 answer
  • If a cannonball were launched with a speed of 37m/s at a 60° angle from the height of Om, what would be the cannonball's range?
    5·1 answer
  • The Newton is the SI unit for ____.<br> temperature<br> mass<br> weight<br> density
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!