Answer:
Explanation:
Our lunar companion rotates while it orbits Earth. It's just that the amount of time it takes the moon to complete a revolution on its axis is the same it takes to circle our planet — about 27 days. As a result, the same lunar hemisphere always faces Earth.
Answer:
D 500 N
Explanation:
As the velocity is constant the scale reads the same whether at rest, or at a fixed velocity. The only thing that would make the scale read differently would be a vertical acceleration.
Answer:
A. 231.77 J
B. 5330.71 J
C. 46 donuts
Explanation:
A. To lift the barbell once, she will have to extend it the full length of her arm. The work done will then be:
W = F * d
Where the force is the weight of the barbell.
F = m * g
Hence, the work done in lifting the barbell is:
W = m * g * d
W = 43 * 9.8 * 0.55
W = 231.77 J
B. If she does 23 repetitions, the total energy she expend will be equal to the Potential energy when the barbell is lifted multiplied by 23:
E = 23 * m * g * d
E = 23 * 231.77
E = 5330.71 J
C. 1 Joule = 4.184 calories
5330.71 Joules = 5330.71 * 4.184 = 22303.69
If 1 donut contains 490 calories, the number of donuts she will need will be:
N = 22303.69/490 = 45.5 donuts or 46 donuts
Answer: A nucleus with more than 209 total nucleons
Explanation:
Hi!
The answer would be 22.5m
<h3>Explanation</h3>
To calculate the distance the ball travels, you would need to apply the following formula from the equations of motion for an accelerating object:
2as = v^2 - u^2
Where a is acceleration due to gravity, 9.8m/s^2
s is the distance traveled by the object (height of ball in this case)
v is the final velocity, which we know will be zero at the point where the ball reaches maximum height.
u is the initial velocity, which is known to us as 21m/s
Rearranging the equation to solve for the height:
s = (v^2 - u^2 ) / 2a
s = ( 0^2 - 21^2 ) / 2(-9.8)
s = - 441/ - 19.6
s = 22.5m
<em>Note: since gravity is acting against the object's motion, it will be negative </em>
<em>Hope this helps!</em>