Answer:
speed of plane in still air = 1060 km/h
speed of wind = 170 km/h
Explanation:
Let teh speed of plane in still air is vp and the speed of air is va.
Irt travels 2670 km in 3 hours against the wind
So,
vp - va = 2670 / 3 = 890 km/h ..... (1)
It travels 11070 km in 9 hours along the wind.
vp + va = 11070 / 9 = 1230 km/h .... (2)
Adding both the equations
2 vp = 2120
vp = 1060 km/h
and va = 1230 - vp = 1230 - 1060 = 170 km/h
(1) Speed is the ratio of the total distance covered by the object and the total time it takes for him to finish it.
Speed = distance / time
In this item, we are given that the distance is 20 kilometers and that the time it takes for the trip is 2 hours. Substituting the known values,
Speed = 20 kilometers / 2 hours
speed = 20 km/h
(2) Velocity on the other hand takes into account the displacement of the object from his original position. It is assumed that Jeremie was basically back to his original position after two hours. Hence, the velocity is equal to zero.
Answer is B.
Because velocity is vector quantity, so magnitud and direction are needed to define it.
Since velocity means the speed(magnitude) of some object in a given direction, so it’s units are usually measured by meters/ seconds
Answer:
0 Newton
Explanation:
If the velocity becomes constant the acceleration will be zero and the net force will be zero because:
force = mass x acceleration
Since acceleration is 0:
force = mass x 0
force = 0
Answer:
Themagnitude of the force is 0.0415N and is directed vertically upwards. The solution to this problem uses the relationship between the Force experienced by a conductor in a magnetic field, the current flowing through the conductor, the length of the conductor and the magnitude of the electric field vector.
Mathematically this can be expressed as
F = I × L ×B
Where F = Force in newtons N
I = current in ampres A
L = length of the conductor in meters (m)
B = magnetic field vector in T
Explanation:
The calculation can be found in the attachment below.
Thedirection of the force can be found by the application of the Fleming's right hand rule. Which states that hold out the right hand with the index finger pointing in the direction of the magnetic field and the thumb pointing in the direction of the current in the conductor, then the direction which the middle finger points is the direction of the force exerted on the conductor. By applying this the direction is vertically upwards.