Answer:
B. 180 million joules
Explanation:
Apply the formula for heat transfer given as;
Q=m*c*Δt where
Q = electrical energy consumed by the heater in joules
m= mass of air in the chamber in kg
c= specific heat of air in joules per kg degrees Celsius
Δt= change in temperatures in degrees Celsius
Given in the question;
m= 1200 kg
c= 1000 J/°C /kg
Δt = 180°-30°= 150° C
Substitute values in the equation to get Q as;
Q=m*c*Δt
Q= 1200 * 1000* 150
Q= 180000000 joules
Q = 180 million joules
<u>The correct answer option is B : 180 million joules.</u>
dkrktiroro49r9494949rototototofklfkfkrororor
Answer
Assuming
At 10000 m height temperature T = -55 C = 218 K
At 1000 m height temperature T = 0 C = 273 K

R = 287 J/kg K



V₂ = V₁ ×1.1222
V₁ = 0.5 × C₁ = 0.5 × 295 = 147.5 m/s
V₂ = 1.1222 × 147.5 = 165.49 m/s
so, the jetliner need to increase speed by ( V₂ -V₁ )
= 165.49 - 147.5
= 17.5 m/s
Answer:
Power output, 
Given:
Pressure of steam, P = 1400 kPa
Temperature of steam, 
Diameter of pipe, d = 8 cm = 0.08 m
Mass flow rate, 
Diameter of exhaust pipe, 
Pressure at exhaust, P' = 50 kPa
temperature, T' = 
Solution:
Now, calculation of the velocity of fluid at state 1 inlet:




Now, eqn for compressible fluid:

Now,




Now, the power output can be calculated from the energy balance eqn:



Answer:
The voltage needed to accelerate the electron beam is 2.46 x 10^16 Volts
Explanation:
The rate of electron flow is given as:
q = 1015 electrons per second
The total current is given by:
Total Current = (Rate of electron flow)(Charge on one electron)
Total Current = I = (1015 electrons/s)(1.6 x 10^-19 C/electron)
I = 1.624 x 10^-16 A
Now, we know that electric power is given as:
Electric Power = Current x Voltage
P = IV
V = P/I
V = 4 W/1.624 X 10^-16 A
<u>V = 2.46 x 10^16 Volts</u>