1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kupik [55]
4 years ago
8

The blue sticker on the rear of a vehicle indicates that it's designed

Engineering
2 answers:
Maksim231197 [3]4 years ago
6 0

Its FALSE  123456789012345678987653213e4r5678

GenaCL600 [577]4 years ago
4 0

Answer:

The blue sticker on the rear of a vehicle indicates that it's designed to use compressed natural gas.

Explanation:

You might be interested in
The following electrical characteristics have been determined for both intrinsic and p-type extrinsic gallium antimonide (GaSb)
xxTIMURxx [149]

Answer:

0.5m^2/Vs and 0.14m^2/Vs

Explanation:

To calculate the mobility of electron and mobility of hole for gallium antimonide we have,

\sigma = n|e|\mu_e+p|e|\mu_h (S)

Where

e= charge of electron

n= number of electrons

p= number of holes

\mu_e= mobility of electron

\mu_h=mobility of holes

\sigma = electrical conductivity

Making the substitution in (S)

Mobility of electron

8.9*10^4=(8.7*10^{23}*(-1.602*10^{-19})*\mu_e)+(8.7*10^{23}*(-1.602*10^{-19})*\mu_h)

0.639=\mu_e+\mu_h

Mobility of hole in (S)

2.3*10^5 = (7.6*10^{22}*(-1.602*10^{-19})*\mu_e)+(1*10^{25}*(-1.602*10^{-19}*\mu_h))

0.1436 = 7.6*10^{-3}\mu_e+\mu_h

Then, solving the equation:

0.639=\mu_e+\mu_h (1)

0.1436 = 7.6*10^{-3}\mu_e+\mu_h (2)

We have,

Mobility of electron \mu_e = 0.5m^2/V.s

Mobility of hole is \mu_h = 0.14m^2/V.s

6 0
3 years ago
A gas turbine operates with a regenerator and two stages of reheating and intercooling. Air enters this engine at 14 psia and 60
Rzqust [24]

Answer:

flow(m) = 7.941 lbm/s

Q_in = 90.5184 Btu/lbm

Q_out = 56.01856 Btu/lbm

Explanation:

Given:

- T_1 = 60 F = 520 R

- T_6 = 940 = 1400 R

- Heat ratio for air k = 1.4

- Compression ratio r = 3

- W_net,out = 1000 hp

Find:

mass flow rate of the air

rates of heat addition and rejection

Solution:

- Using ideal gas relation compute T_2, T_4, T_10:

                     T_2 = T_1 * r^(k-1/k)

                     T_2 = T_4 = T_10 = 520*3^(.4/1.4) = 711.744 R

- Using ideal gas relation compute T_7, T_5, T_9:

                     T_7 = T_6 * r^(-k-1/k)

                     T_7 = T_5 = T_9 = 1400*3^(-.4/1.4) = 1022.84 R

- The mass flow rate is obtained by:

                     flow(m) = W_net,out / 2*c_p*(1400-1022.84-711.744+520)

                     flow(m) = 1000*.7068 / 2*0.24*(1400-1022.84-711.744+520)

                     flow(m) = 7.941 lbm/s

- The heat input is as follows:

                     Q_in = c_p*(T_6 - T_5)

                     Q_in = 0.24*(1400 - 1022.84)

                     Q_in = 90.5184 Btu/lbm

- The heat output is as follows:

                     Q_out = c_p*(T_10 - T_1)

                     Q_out = 0.24*(711.744 - 520)

                    Q_out = 56.01856 Btu/lbm

                                           

                     

5 0
3 years ago
What type of engineer would be most likely to develop a design for cars? chemical civil materials mechanical
Andreyy89
I don’t know but good luck
4 0
3 years ago
A 4-stroke Diesel engine with a displacement of Vd = 2.5x10^-3m^3 produces a mean effective pressure of 6.4 bar at the speed of
yKpoI14uk [10]

Answer:

The power developed by engine is 167.55 KW

Explanation:

Given that

V_d=2.5\times 10^{-3} m^3

Mean effective pressure = 6.4 bar

Speed = 2000 rpm

We know that power is the work done per second.

So

P=6.4\times 100\times 2.5\times 10^{-3}\times \dfrac{2\pi \times2000}{120}

We have to notice one point that we divide by 120 instead of 60, because it is a 4 cylinder engine.

P=167.55 KW

So the power developed by engine is 167.55 KW

4 0
3 years ago
A circular bar will be subjected to an axial force (P) of 2000 lbf. The bar will be made of material that has a strength (S) of
schepotkina [342]

Answer:

n = 2.36

Explanation:

The stress experimented by the circular bar is:

\sigma = \left[\frac{2000\, lbf}{\frac{\pi}{4}\cdot (0.5\,in)^{2}}\right]\cdot \left(\frac{1\,kpsi}{1000\,psi} \right)

\sigma = 10.186\,kpsi

The safety factor is:

n = \frac{24\,kpsi}{10.186\,kpsi}

n = 2.36

5 0
3 years ago
Other questions:
  • A technician has been dispatched to assist a sales person who cannot get his laptop to display through a projector. The technici
    13·1 answer
  • What is a magnitute?
    5·2 answers
  • Fluid originally flows through a tube at a rate of 100 cm^3/s. To illustrate the sensitivity of the Poiseuille flow rate to vari
    7·1 answer
  • Explain the underlying physical reason why when we conduct various heat treatments on 1018 steel we expect the modulus of elasti
    8·1 answer
  • The ultimate BOD of a river just below a sewage outfall is 50.0 mg/L, and the oxygen deficit at the outfall D0 is 2.0 mg/L. The
    6·1 answer
  • How do i open a door<br> please i've been trapped in this room for ages
    9·1 answer
  • What invention of the Middle Ages contributed to making books easily available?
    15·1 answer
  • A golfer and her caddy see lightning nearby. the golfer is about to take his shot with a metal club, while her caddy is holding
    12·1 answer
  • An agricultural manager requires
    12·1 answer
  • Silicon chips are used primarily in ?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!