Explanation:
The given data is as follows.
Solvent 1 = benzene, Solvent 2 = water
= 2.7,
= 100 mL
= 10 mL, weight of compound = 1 g
Extract = 3
Therefore, calculate the fraction remaining as follows.
![f_{n} = [1 + K_{p}(\frac{V_{S_{2}}}{V_{S_{1}}})]^{-n}](https://tex.z-dn.net/?f=f_%7Bn%7D%20%3D%20%5B1%20%2B%20K_%7Bp%7D%28%5Cfrac%7BV_%7BS_%7B2%7D%7D%7D%7BV_%7BS_%7B1%7D%7D%7D%29%5D%5E%7B-n%7D)
= ![[1 + 2.7(\frac{100}{10})]^{-3}](https://tex.z-dn.net/?f=%5B1%20%2B%202.7%28%5Cfrac%7B100%7D%7B10%7D%29%5D%5E%7B-3%7D)
= 
= 
Hence, weight of compound to be extracted = weight of compound - fraction remaining
= 1 - 
= 0.00001
or, = 
Thus, we can conclude that weight of compound that could be extracted is
.
B, C and E. In radioactive decay unstable atoms stabilize by releasing energy.
Answer:
Sorry mate! I can't understand this language...
Answer:materials that impede the free flow of electrons from atom to atom and molecule to molecule.
Answer:
Heat required = 13,325 calories or 55.75 KJ.
Explanation:
To convert a water to steam at 100 degree celsius to vapor, we have to give latent heat of vaporization to water
Which equals ,
Q = mL,
Where, m is the mass of water present
L = specific latent heat of vaporization
Here , m= 25 gram
L equals to 533 calories (or 2230 Joules)
So, Q = 25×533 = 13,325 Calories
Or , Q = 55,750 Joules = 55.75 KJ
so, Heat required = 13,325 calories or 55.75 KJ.