Answer: D) 3.2 × 10^8
Explanation: Insulators are best described as materials which are poor conductors of electricity and hence do not allow passage of electricity through them. Resistivity are hence used to describe property or characteristic of a material which does not allow the flow or passage of electric current.
In summary, materials which high resistivity values are referred to as Insulators. Conversely, those with low resistivity or high conductivity values are called conductors while those with intermediate values are named semiconductors.
In the question given above, the material with a resistivity value of 3.2 × 10^8 - - - has a very high resistivity value (320000000Ω), the other options given have very low resistivity values ; 0.0000000017, etc and are most likely to be conductors due to their excessively low resistivity values.
Answer:
E = 0.0130 V/m.
Explanation:
The electric field is related to the potential difference as follows:

<u>Where:</u>
E: is electric field
ΔV: is the potential difference = 3.95 mV
d: is the distance of a person's chest = 0.305 m
Then, the electric field is:

Therefore, the maximum electric field created is 0.0130 V/m.
I hope it helps you!
Answer:
Length of Eiffel tower, when the temperature is 35 degrees = 300.21 m
Explanation:
Thermal expansion is given by the expression

Here length of Eiffel tower, L = 300 m
Coefficient of thermal expansion, α = 0.000012 per degree Celsius
Change in temperature, = 35 - (-24) = 59degrees Celsius
Substituting

Length of Eiffel tower, when the temperature is 35 degrees = 300 + 0.2124 = 300.21 m
Explanation:
Let h is the height of the plane above ground. x is the horizontal distance between the ground and the airport. Let s(t) is the distance between the plane and the airport. So,
...........(1)
Given, h = 4, x = 40 and s(t) = -20 mph
Differentiate equation (1) wrt t


When x = 40, 



So, the speed of the airplane is 241.14 m/s. Hence, this is the required solution.
Using K.E=1/2MV^2
answer is 125joules