Density = (mass) divided by (volume)
We know the mass (2.5 g). We need to find the volume.
The penny is a very short cylinder.
The volume of a cylinder is (π · radius² · height).
The penny's radius is 1/2 of its diameter = 9.775 mm.
The 'height' of the cylinder is the penny's thickness = 1.55 mm.
Volume = (π) (9.775 mm)² (1.55 mm)
= (π) (95.55 mm²) (1.55 mm)
= (π) (148.1 mm³)
= 465.3 mm³
We know the volume now. So we could state the density of the penny,
but nobody will understand what we have. Here it is:
mass/volume = 2.5 g / 465.3 mm³ = 0.0054 g/mm³ .
Nobody every talks about density in units of ' gram/(millimeter)³ ' .
It's always ' gram / (centimeter)³ '.
So we have to convert our number for the volume.
(0.0054 g/mm³) x (10 mm / cm)³
= (0.0054 x 1,000) g/cm³
= 5.37 g/cm³ .
This isn't actually very close to what the US mint says for the density
of a penny, but it's in a much better ball park than 0.0054 was.
First electromagnet
Explanation:
The first electromagnet is the strongest and it is stronger than the given electromagnet above.
An electromagnet is a temporary magnet made by passing current through a wire wounded round an iron core or metallic core.
- When current is passed through, the metal becomes magnetic.
- The strength of the electromagnet depends on the number of coil round the metal core and also the intensity of current passed through it.
- The higher the number of coils wounded round the metal core, the stronger the electromagnet that will be produced.
- Also, the higher the intensity of electricity passed through the wire, the stronger it is.
learn more:
Electromagnet brainly.com/question/2191993
#learnwithBrainly
Answer:
Direction
Explanation:
There are two types of electric current:
- DC (Direct current): in a direct current, the direction of the flow of the current is constant; this means that it does not change. This means that the potential difference supplied has always the same direction, so that the electrons travel always in the same direction through the circuit
- AC (Alternating current): in an alternating current, the direction of the flow of the current is constantly reverses. This means that the direction of the potential difference supplied constantly changes, therefore the electrons travel half the time in one direction and half the time in the opposite direction.