The chemical equation representing the first ionization energy for lithium is given by;
Li → Li + e-
<h2>Further Explanation; </h2><h3>Ionization energy</h3>
- Ionization energy is the energy required to remove outermost electrons from the outermost energy level. Energy is required to remove an electron from an atom.
- The closer an electron is to the nucleus the more energy is required, since the electron is more tightly bound to the atom thus making it more difficult to remove, hence higher ionization energy.
- Ionization energy increases across the periods and decreases down the group from top to bottom.
- Additionally, the ionization energy increases with subsequent removal of a second or a third electron.
<h3>First ionization energy </h3>
- This is the energy required to remove the first electron from the outermost energy level of an atom.
- Energy needed to remove the second electron to form a divalent cation is called the second ionization energy.
<h3>Trends in ionization energy </h3><h3>1. Down the group(top to bottom)</h3>
- Ionization energy decreases down the groups in the periodic table from top to bottom.
- It is because as you move down the group the number of energy levels increases making the outermost electrons get further from the nucleus reducing the strength of attraction to the nucleus.
- This means less energy will be required compared to an atoms of elements at the top of the groups.
<h3>2. Across the period (left to right)</h3>
- Ionization energy increases across the period from left to right.
- This can be explained by an increase in nuclear energy as extra protons are added to the nucleus across the period increasing the strength of attraction of electrons to the nucleus.
- Consequently, more energy is needed to remove electrons from the nucleus.
Keywords: Ionization energy, periodic table, energy levels, electrons
<h3>Learn more about</h3>
Level: High school
Subject: Chemistry
Topic: Periodic table and chemical families
Sub-topic: Ionization energy
If the value of H is positive, it means you have to add that much heat to complete the reaction. If H is negative, it means that much heat is released during the chemical process. Because it is -73 kJ, 73 kJ of heat are released in the reaction.
37 grams of NaCl (when I mean equivalent I mean the ratio of the equation is 1:2 for moles or Cl2 and NaCl
The density of each half of the coin is 10.49 g/cm3
In science density is defined as the ratio of mass to volume of an object.
Density is an intrinsic property.It is not affect by the amount of substance present.
This implies that each half of the broken coin must have the same density since it it is an inherent property of every silver material.
The density of each part of the coin therefore is 10.49 g/cm3.
Learn more: brainly.com/question/18320053