Answer:
Explanation:
Cubic decimeter is the same unit as liter; so, mole per cubic decimeter is mole per liter, and that is the unit of concentration of molarity. Thus, what is asked is the molarity of the solution. This is how you find it.
1. <u>Take a basis</u>: 1 dm³ = 1 liter = 1,000 ml
2. <u>Calculate the mass of 1 lite</u>r (1,000 ml) of solution:
- density = mass / volume ⇒ mass = density × volume
Here, the density is given through the specific gravity
Scpecific gravity = density of acid / density of water
Take density of water as 1.00 g/ml.
- density of solution = 1.25 g/ml
- mass solution = 1.25 g/ml × 1,000 ml = 1,250 g
3. <u>Calculate the mass of solute</u> (pure acid)
- % m/m = (mass of solute / mass of solution) × 100
- 56 = mass of solute / 1,250 g × 100
- mass of solute = 56 × 1,250g / 100 = 700 g
4. <u>Calculate the number of moles of solute</u>:
- moles = mass in grams / molar mass = 700 g / 70 g/mol = 10 mol
5. <u>Calculate molarity (mol / dm³)</u>
- M = number of moles of solute / liter of solution = 10 mol / 1 liter = 10 mol/liter.
Answer:
Your question is missing some information.
But in most of the systems, potential energy and kinetic energy are inversely proportional
?????????????????????????????????????????
Answer:
λ = 1.43 x 10³ meters (radio waves)
Explanation:
c = f·λ => λ = c/f
λ = wavelength = ?
f = frequency = 2.10 x 10¹⁴ Hz = 2.10 x 10¹⁴ cycles/sec
c = speed of light (vacuum) = 3.0 x 10⁸m/sec
λ = c/f = 3.0 x 10⁸m/sec / 2.10 x 10¹⁴sec⁻¹ = 1.43 x 10³ meters (radio waves)
Answer: 2820 seconds
1 minute = 60 seconds
Multiply the value times 60
47×60=2820