The correct option is C.
An atom can be either in the ground state or in an excited state. An atom is said to be in the ground state, if the total energy of its electron can not be lowered by moving one or more electrons into different orbitals. At the ground state, the electrons in the atom have the lowest energy possible and they are stable. On the other hand, an atom is said to be in an excited state, if the energy of its electrons can be lowered by transferring one or more electrons into different orbitals. An atom in an excited state has more energy and is less stable.
<h3><u>Answer;</u></h3>
Higher velocity of particles
<h3><u>Explanation;</u></h3>
The diffusion rate is determined by a variety of factors which includes;
- Temperature such that the higher the temperature, the more kinetic energy the particles will have, so they will move and mix more quickly and the diffusion rate will be high.
- Concentration gradient such that the greater the difference in concentration, the quicker the rate of diffusion.
- Higher velocity of particles increases the diffusion rate as this means more kinetic energy by the particles and hence the particles will mix and move faster, thus higher diffusion rate.
The enthalpy energy in condensation process is negative because it releases energy
The entropy in will also decreases .
Temperature affected this change because it will now create free energy if added with this result this is the condestion process
The correct answer is
Energy of electrons depends on light’s frequency, not intensity.
As per photoelectric effect, if we incident a light on metal surface it will results into emission of electron from it
if we increase the number of photons the number of electrons will increase however if we increase the frequency the number of photons will not increase
While if we increase frequency the energy of electrons will increase as
Energy of photon = Work function of metal + kinetic energy of electrons