Answer: The answer is density
Answer:
Change in potential energy of the block-spring-Earth
system between Figure 1 and Figure 2 = 1 Nm.
Explanation:
Here, spring constant, k = 50 N/m.
given block comes down eventually 0.2 m below.
here, g = 10 m/s.
let block be at a height h above the ground in figure 1.
⇒In figure 2,
potential energy of the block-spring-Earth
system = m×g×(h - 0.2) + 1/2× k × x². where, x = change in spring length.
⇒ Change in potential energy of the block-spring-Earth
system between Figure 1 and Figure 2 = (m×g×(h - 0.2)) - (1/2× k × x²)
= (1×10×0.2) - (1/2×50×0.2×0.2) = 1 Nm.
Explanation:
1) N₂ + O₂ → 2 NO
Kc = [NO]² / ([N₂] [O₂])
Set up an ICE table:
![\left[\begin{array}{cccc}&Initial&Change&Equilibrium\\N_{2}&0.114&-x&0.114-x\\O_{2}&0.114&-x&0.114-x\\NO&0&+2x&2x\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D%26Initial%26Change%26Equilibrium%5C%5CN_%7B2%7D%260.114%26-x%260.114-x%5C%5CO_%7B2%7D%260.114%26-x%260.114-x%5C%5CNO%260%26%2B2x%262x%5Cend%7Barray%7D%5Cright%5D)
Plug into the equilibrium equation and solve for x.
1.00×10⁻⁵ = (2x)² / ((0.114 − x) (0.114 − x))
1.00×10⁻⁵ = (2x)² / (0.114 − x)²
√(1.00×10⁻⁵) = 2x / (0.114 − x)
0.00316 = 2x / (0.114 − x)
0.00361 − 0.00316x = 2x
0.00361 = 2.00316x
x = 0.00018
The volume is 1.00 L, so the concentrations at equilibrium are:
[N₂] = 0.114 − x = 0.11382
[O₂] = 0.114 − x = 0.11382
[NO] = 2x = 0.00036
2(a) Cl₂ → 2 Cl
Kc = [Cl]² / [Cl₂]
![\left[\begin{array}{cccc}&Initial&Change&Equilibrium\\Cl_{2}&2.0&-x&2.0-x\\Cl&0&+2x&2x\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D%26Initial%26Change%26Equilibrium%5C%5CCl_%7B2%7D%262.0%26-x%262.0-x%5C%5CCl%260%26%2B2x%262x%5Cend%7Barray%7D%5Cright%5D)
1.2×10⁻⁷ = (2x)² / (2 − x)
1.2×10⁻⁷ (2 − x) = 4x²
2.4×10⁻⁷ − 1.2×10⁻⁷ x = 4x²
2.4×10⁻⁷ ≈ 4x²
x² ≈ 6×10⁻⁸
x ≈ 0.000245
2x ≈ 0.00049
2(b) F₂ → 2 F
Kc = [F]² / [F₂]
![\left[\begin{array}{cccc}&Initial&Change&Equilibrium\\F_{2}&2.0&-x&2.0-x\\F&0&+2x&2x\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D%26Initial%26Change%26Equilibrium%5C%5CF_%7B2%7D%262.0%26-x%262.0-x%5C%5CF%260%26%2B2x%262x%5Cend%7Barray%7D%5Cright%5D)
1.2×10⁻⁴ = (2x)² / (2 − x)
1.2×10⁻⁴ (2 − x) = 4x²
2.4×10⁻⁴ − 1.2×10⁻⁴ x = 4x²
2.4×10⁻⁴ ≈ 4x²
x² ≈ 6×10⁻⁵
x ≈ 0.00775
2x ≈ 0.0155
F₂ dissociates more, so Cl₂ is more stable at 1000 K.
That's true.
Netwon's second law states that the resultant of the forces F acting on a body is equal to the product between its mass m and its acceleration a:

This means that if the net force acting on an object is different from zero (term on the left), than the acceleration of the object (term on the right) must be different from zero as well, and therefore the body is accelerating.
In particular, both F and a in the equation are vectors: this means that if the acceleration is positive, F and a have the same direction. In this problem, the acceleration is positive (because the object is speeding up), therefore the force and the acceleration have same direction.
Answer: The answer is right here and it is corrct
:)
Explanation: I think you can unblocked it but Hope this help :)