Answer:
F' = (4/9)F
Explanation:
The electrostatic force between two charged objects is given by Coulomb's Law:
F = kq₁q₂/r² -------------------- equation (1)
where,
F = Electrostatic Force
k = Coulomb's Constant
q₁ = magnitude of first charge
q₂ = magnitude of second charge
r = distance between charges
Now, when the charges and distance altered as follows:
q₁' = 2q₁
q₂' = 2q₂
r' = 3r
Then,
F' = kq₁'q₂'/r'²
F' = k(2q₁)(2q₂)/(3r)²
F' = (4/9)kq₁q₂/r²
using equation (1):
<u>F' = (4/9)F</u>
Answer:
the more particles packed together the faster it falls
Explanation:
the mass + the 1 constant g-force = the speed without adding air resistance
In this case, the movement is uniformly delayed (the final
rapidity is less than the initial rapidity), therefore, the value of the
acceleration will be negative.
1. The following equation is used:
a = (Vf-Vo)/ t
a: acceleration (m/s2)
Vf: final rapidity (m/s)
Vo: initial rapidity (m/s)
t: time (s)
2. Substituting the values in the equation:
a = (5 m/s- 27 m/s)/6.87 s
3. The car's acceleration is:
a= -3.20 m/ s<span>^2</span>