Answer:
The new temperature will be 565.83 K.
Explanation:
Gay Lussac's law establishes the relationship between the temperature and the pressure of a gas when the volume is constant. This law says that the pressure of the gas is directly proportional to its temperature. This means that if the temperature increases, the pressure will increase; or if the temperature decreases, the pressure will decrease.
In other words, Gay-Lussac's law states that when a gas undergoes a constant volume transformation, the ratio of the pressure exerted by the gas temperature remains constant:

When an ideal gas goes from a state 1 to a state 2, it is true:

In this case:
- P1= 180 kPa
- T1= 291 K
- P2= 350 kPa
- T2= ?
Replacing:

Solving:

T2= 565.83 K
<u><em>The new temperature will be 565.83 K.</em></u>
Bacteria can’t live without humans
Total of 127.013 C of charge is passed
Given
weight of Ag solution before current has passed = 1.7854 g
weight of Ag solution after current has passed = 1.8016 g
Molecular mass of Ag = 107.86 g
Faraday's Constant = 96485
First of all we have to apply Faraday's First Law of Electrolysis i.e
m = ZQ
where
Z is propotionality constant (g/C)
Q is charge (C)
Hence,
Z = Atomic mass of substance/ Faraday's Constant
= 
= 0.0011178 g/C
Now ,
change in mass before and after the passing of current (Δm)
Δm = 1.8016g-1.7854g
= 0.0162g
Now amount of coulombs passed = 
amount of coulombs passed = 127.03524 C
Thus from the above conclusion we can say that amount of coulombs have passed is 127.03524 C
Learn more about Electrolysis here: brainly.com/question/16929894
#SPJ4
Answer:
2.551020408163 and it keeps on going or 2 27⁄49
Answer:
The battery of a phone contains stores chemical energy. This energy is converted into electrical energy primarily when the phone is turned on. The chemical energy is also converted into light energy, sound energy and heat energy. With the passage of time, the energy will be changed back into the chemical energy when we will charge the phone again.