I believe they’re both true.
Al is 1.
As for NO3,it is one entity, an the whole thing is being multiplied by 3. Use the distributive property from math.
N is 3.
And O is 9.
In total, there are 13 atoms.
The phosphate group of one nucleotide bonds covalently with the sugar molecule of the next nucleotide, and so on, forming a long polymer of nucleotide monomers. The sugar–phosphate groups line up in a “backbone” for each single strand of DNA, and the nucleotide bases stick out from this backbone. The carbon atoms of the five-carbon sugar are numbered clockwise from the oxygen as 1′, 2′, 3′, 4′, and 5′ (1′ is read as “one prime”). The phosphate group is attached to the 5′ carbon of one nucleotide and the 3′ carbon of the next nucleotide. In its natural state, each DNA molecule is actually composed of two single strands held together along their length with hydrogen bonds between the bases.
Answer:
The further an electron is from the nucleus. the greater its energy level.
Explanation:
When an electron is close to the nucleus, it is at as low an energy level as it can get.
We must put energy into an electron to pull it away from the attraction of a nucleus.
So, electrons that are further from the nucleus are at higher energy levels.
Answer:
OCO
Another way of writing CO₂
Explanation:
A reaction equation has <u>reactants on the left</u> and <u>products on the right</u>.
The reactants are carbon and oxygen. The product is carbon dioxide.
C + O₂ → CO₂
You might see the equation both ways.
C + O₂ → OCO
C + O₂ in the products would mean no reaction has occurred. The problem can <u>solid carbon can burn in oxygen</u>, so a reaction will occur. For no reaction, you would put "NR" in the products.
<u>OCO is the structural way of writing CO₂.</u> Both have one carbon atom (C) and two oxygen atoms (O).
C + 2O is not possible. Oxygen, if alone, has to be at least O₂ because it's a <u>diatomic molecule</u>.