The formula for energy of motion is KE = .5 x m x v^2
Ke= Kinetic Energy in Joules
m = Mass in Kilograms
v = Velocity in Meters per Second
milligrams
Explanation:
The best unit to measure the mass of a grain of salt is the milligram.
This is about; a thousandth of a gram.
A grain of salt is a very small particle size that can still be visible with the eye.
It has a very low and small mass.
For substances like this, we use the milligram:
1000milligram = 1g
learn more:
Mass brainly.com/question/4736384
#learnwithBrainly
Answer:
d) 2Fr
Explanation:
We know that the work done in moving the charge from the right side to the left side in the k shell is W = ∫Fdr from r = +r to -r. F = force of attraction between nucleus and electron on k shell. F = qq'/4πε₀r² where q =charge on electron in k shell -e and q' = charge on nucleus = +e. So, F = -e × +e/4πε₀r² = -e²/4πε₀r².
We now evaluate the integral from r = +r to -r
W = ∫Fdr
= ∫(-e²/4πε₀r²)dr
= -∫e²dr/4πε₀r²
= -e²/4πε₀∫dr/r²
= -e²/4πε₀ × -[1/r] from r = +r to -r
W = e²/4πε₀[1/-r - 1/+r] = e²/4πε₀[-2/r} = -2e²/4πε₀r.
Since F = -e²/4πε₀r², Fr = = -e²/4πε₀r² × r = = -e²/4πε₀r and 2Fr = -2e²/4πε₀r.
So W = -2e²/4πε₀r = 2Fr.
So, the amount of work done to bring an electron (q = −e) from right side of hydrogen nucleus to left side in the k shell is W = 2Fr
Solar Radiation, Orbital Distance, Air Pressure, and the Abundance of water.