Jerome solves a problem using the law of conservation of momentum. What should Jerome always keep constant for each object after the objects collide and bounce apart?
a-velocity
b-mass
c-momentum
d-direction
Answer:
b. Mass
Explanation:
This question has to do with the principle of the law of conservation of momentum which states that the momentum of a system remains constant if no external force is acting on it.
As the question states, two objects collide with each other and eventually bounce apart, so their momentum may not be conserved but the mass of the objects is constant for each non-relativistic motion. Because of this, the mass of each object prior to the collision would be the same as the mass after the collision.
Therefore, the correct answer is B. Mass.
Point C would the greatest
Answer:
Explanation:
From the question we are told that mass
Thin layer radius 
Generally the expression for ths solution is given as
Xcm =(m*0 =m(-2R))/2m =-mR/(2m)=-R/2
the center of mass will not move at initial state
Considering the center of mass of both bodies


Therefore the enclosing layer moves
Convert 38 ft/s^2 to mi/h^2. Then we se the conversion factor > 1 mile = 5280 feet and 1 hour = 3600 seconds.
So now we show it > 
Then we have to use the formula of constant acceleration to determine the distance traveled by the car before it ended up stopping.
Which the formula for constant acceleration would be > 
The initial velocity is 50mi/h 
When it stops the final velocity is 
Since the given is deceleration it means the number we had gotten earlier would be a negative so a = -93272.27
Then we substitute the values in....

So we can say the car stopped at 0.0134 miles before it came to a stop but to express the distance traveled in feet we need to use the conversion factor of 1 mile = 5280 feet in otherwards > 
So this means that the car traveled in feet 70.8 ft before it came to a stop.