Answer:
-2.5m/s²
Explanation:
The acceleration of a body is giving by the rate of change of the body's velocity. It is given by
a = Δv / t        ----------------(i)
Where;
a = acceleration (measured in m/s²)
Δv = change in velocity = final velocity - initial velocity   (measure in m/s)
t = time taken for the change (measured in seconds(s))
From the question;
i. initial velocity = 5m/s
final velocity = 0 [since the body (ball) comes to rest]
Δv = 0 - 5 = -5m/s
ii. time taken = t = 2s
<em>Substitute these values into equation (i) as follows;</em>
a = (-5m/s) / (2s)
a = -2.5m/s²
Therefore, the acceleration of the ball is -2.5m/s²
NB: The negative sign shows that the ball was actually decelerating.
 
        
             
        
        
        
The answer to your question is A
        
                    
             
        
        
        
Gravity largely depends on the comparison of two objects; it's why you have the equation F= (GMm)/r^2. On Earth, you have different altitudes that, with the formula, will give different results for gravity because the radius is different everywhere. This difference on calculations, however, are seen to be miniscule. We know gravity as 9.81 m/s^2 but it might be different by thousandths or hundreds of thousandths of a decimal.
        
                    
             
        
        
        
This version of Einstein’s equation is often used directly to find what value? E = ∆mc2
Answer: This version of Einstein’s equation is often used directly to find the mass that is lost in a fusion reaction. Therefore the correct answer to this question is answer choice C).
I hope it helps, Regards.