Answer:
(C) The recrystallization solvent should be nonvolatile.
Explanation:
Recrystallization is the separation technique which is used to purify the solid compounds in their crystal or amorphous form.
Some properties follow the recrystallization process as:
The solids are more soluble in hot solvent as compared to the solubility in the cold solvent.
The solvent must have lower boiling point and can be volatile easily.
The solvent should not react with the compound.
The impurities must be soluble in the cool solvent, so that only the pure product crystallizes.
Hence, Answer - C which is not an ideal characteristic.
Density is the mass of compound divided by its volume can be shown as follows:


40 mL of snow having 20 g of mass calculated from density.
Now, 10 cm of snow = 3.93 inches = 20 g
As, 10 inches of rain will produce 11 inches of ice as the volume of ice is bigger than rain water.
10 inches rain = 11 inches snow
3.93 inches of snow produced by

Thus, 3.57 incehs of rain produces by 10 cm snow.
Answer:
The mass of 0.280 mole sample of sodium hydroxide NaOH is 11.2 grams.
Explanation:
To know the mass in grams of 0.280 moles of sample of sodium hydroxide NaOH, you must know the molar mass of the compound, that is, the mass of one mole of a substance, which can be an element or a compound.
So you know:
- Na: 23 g/mole
- O: 16 g/mole
- H: 1 g/mole
So, the molar mass of NaOH is:
NaOH= 23 g/mole + 16 g/mole+ 1 g/mole= 40 g/mole
Then the following rule of three can be applied: if in 1 mole of sodium hydroxide there are 40 grams, in 0.280 moles how much mass is there?

mass= 11.2 grams
<u><em>The mass of 0.280 mole sample of sodium hydroxide NaOH is 11.2 grams.</em></u>
Sugar. (We need a design tech section)
Answer: 4.21×10⁻⁸
Explanation:
1) Assume a general equation for the ionization of the weak acid:
Let HA be the weak acid, then the ionization equation is:
HA ⇄ H⁺ + A⁻
2) Then, the expression for the ionization constant is:
Ka = [H⁺][A⁻] / [HA]
There, [H⁺] = [A⁻], and [HA] = 0.150 M (data given)
3) So, you need to determine [H⁺] which you do from the pH.
By definition, pH = - log [H⁺]
And from the data given pH = 4.1
⇒ 4.10 = - log [H⁺] ⇒ [H⁺] = antilog (- 4.10) = 7.94×10⁻⁵
4) Now you have all the values to calculate the expression for Ka:
ka = 7.94×10⁻⁵ × 7.94×10⁻⁵ / 0.150 = 4.21×10⁻⁸