the focal length <span> is much more decent for a concave, and also worse</span><span> for a convex mirror. When the image that is given, distance is good and decent, images are always on the same area of the mirror as the object given , and it is not fake. images distance is </span>never positive <span>, the image is on the oppisite side of the mirror, so the image must be virtual.</span>
Answer:
<em>B. 68.6m</em>
Explanation:
<u>Free Fall Motion
</u>
When a body is left to move in the air with no friction, the motion is ruled only by the force of gravity. The vertical distance a body travels in the air after a time t is
.

We know the egg takes 3.74 seconds to reach the ground. The height it was launched from is


The closest correct option is
B. 68.6m
General relativity is the theory of space and time. This was theory was found by Albert Einstein
Answer:
15.3 m/s
Explanation:
Radius of orbit= 6400+6300 = 12700 km
Circumference of orbit= 2*(22/7)*12700 =79796.45*10^3 m
Now,
Speed= Distance / Time
= 79796.45*10^3/(24*60*3600)
= 15.3 m/s
Answer:
i. + 22.5 m ii. 4.0 m
Explanation:
i. Image distance
Using the lens formula
1/u + 1/v = 1/f where f = focal length = + 18.0 m, u = object distance = distance of shark away from lens = + 90.0 m and v = image distance from lens = unknown
So, we find v
1/v = 1/f - 1/u
= 1/+18 - 1/+90
= (5 - 1)/90
= 4/90
v = 90/4
= + 22.5 m
So the image is real and formed 22.5 m away on the other side of the lens.
ii Length of Shark
Using the magnification formula, m = image height/object height = image distance/object distance. image height = 1.0 m where object height = length of shark.
m = image distance/object distance
= v/u
= +22.5/+90
= 0.25
0.25 = image height/object height
So,
object height = image height/0.25
= 1.0 m/0.25
= 4.0 m
So, the length of the shark is 4.0 m