Oooooo there's a spongy bone? that's cool! Lol okay okay, I will research it and help you out.
Here's what I found:
Cancellous bone<span>, also known as </span>spongy<span> or </span>trabecular bone<span>, is one of the </span>two<span> types of </span>bone<span> tissue found in the human body. ... It is very porous and contains red </span>bone<span>marrow, where blood cells are made.</span>
Answer:
6.2N force
Explanation:
According to Newton's second law of motion, force is equal to the product of the mass of a body and its acceleration. Mathematically,
Force = mass × acceleration
Given mass of bucket of water = 6.2kg
acceleration of the bucket = 1m/s²
Force exerted on the rope = 6.2 × 1
= 6.2N
<h2>Right answer: acceleration due to gravity is always the same </h2><h2 />
According to the experiments done and currently verified, in vacuum (this means there is not air or any fluid), all objects in free fall experience the same acceleration, which is <u>the acceleration of gravity</u>.
Now, in this case we are on Earth, so the gravity value is
Note the objects experience the acceleration of gravity regardless of their mass.
Nevertheless, on Earth we have air, hence <u>air resistance</u>, so the afirmation <em>"Free fall is a situation in which the only force acting upon an object is gravity" </em>is not completely true on Earth, unless the following condition is fulfiled:
If the air resistance is <u>too small</u> that we can approximate it to <u>zero</u> in the calculations, then in free fall the objects will accelerate downwards at
and hit the ground at approximately the same time.
Insomnia and night terrors
When a car hits you in a rear end collision, the car initially has a momentum going in one direction. This causes your car to move in the same direction that car was moving even if you were at rest. So, for conservation of momentum, you initially have momentum going in the east direction for example, after the collision, you will have a change in momentum which causes you to have a velocity in the west direction. This is because you are initially at rest and then there is a sudden change in velocity so when you speed up, that momentum causes you to move backwards. If you don't have a properly adjusted neckrest you could may experience whiplash.