Answer:
25. Approximately 8.1 meters
26. North 1.31 km, and East 2.81 km
Explanation:
25.
Notice that the displacements: 6 meters east and 5.4 south create the legs of a right angle triangle. The hypotenuse of that triangle will be the distance (d) needed to cover in order to get the ball in the hole in one putt. That is:

which can be rounded to 8.1 m.
26.
Notice that the 3.1 km at an angle of 25 degrees north of east, is the hypotenuse of a right angle triangle that has for legs the east and north components of that distance.
We can find the leg corresponding to the east displacement using the cosine function (that relates adjacent side with hypotenuse):

and we can calculate the north component using the sine function that relates the opposite side to the angle with the hypotenuse.

Answer:
Thinking also friction force
Explanation:
Answer:
560 m
Explanation:
The speed of sound in air is approximately:
v ≈ v₀ + 0.6T
where v₀ is the speed of sound at 0°C (273 K) in m/s, and T is the temperature in Celsius.
The speed of sound at 20°C at that altitude is:
v ≈ 327 + 0.6(20)
v ≈ 339 m/s
The sound travels from the hikers to the mountain and back again, so it travels twice the distance.
339 m/s = 2d / 3.3 s
2d = 1118.7 m
d = 559.35 m
Rounding, the mountain is approximately 560 m away.
By definition, speed is the integral of acceleration with respect to time.
We have then:

As the acceleration is constant, then integrating we have:

Where,
vo: constant of integration that corresponds to the initial velocity
We observe then that the speed varies linearly when the acceleration is constant
.
Therefore, for constant acceleration, the velocity is changing.
Answer:
an object with a constant acceleration always have:
A. changing velocity
Complete Question
One day, after pulling down your window shade, you notice that sunlight is passing through a pinhole in the shade and making a small patch of light on the far wall. Having recently studied optics in your physics class, you're not too surprised to see that the patch of light seems to be a circular diffraction pattern. It appears that the central maximum is about 2 cm across, and you estimate that the distance from the window shade to the wall is about 5 m.
Required:
Estimate the diameter of the pinhole.
Answer:
The diameter is 
Explanation:
From the question we are told that
The central maxima is 
The distance from the window shade is 
The average wavelength of the sun is mathematically evaluated as

Generally the visible light spectrum has a wavelength range between 400 nm to 700 nm
So the initial wavelength of the sun is 
and the final wavelength is 
Substituting this into the above equation


The diameter is evaluated as

substituting values

