Answer:
D
Explanation
take 5x2000 and J is the unit for power therfore it cant be A and B and C are not 10,000.
Answer:
a)32.34 N/m
b)10cm
c)1.6 Hz
Explanation:
Let 'k' represent spring constant
'm' mass of the object= 330g =>0.33kg
a) in order to find spring constant 'k', we apply Newton's second law to the equilibrium position 10cm below the release point.
ΣF=kx-mg=0
k=mg / x
k= (0.33 x 9.8)/ 0.1
k= 32.34 N/m
b) The amplitude, A, is the distance from the equilibrium (or center) point of motion to either its lowest or highest point (end points). The amplitude, therefore, is half of the total distance covered by the oscillating object.
Therefore, amplitude of the oscillation is 10cm
c)frequency of the oscillation can be determined by,
f= 1/2π 
f= 1/2π 
f= 1.57
f≈ 1.6 Hz
Therefore, the frequency of the oscillation is 1.6 Hz
Answer:

Explanation:
From the question we are told that:
Beat frequency 
Frequency 
Generally the equation for Frequency of the violin is mathematically given by



Therefore the period of the violin string oscillations is



The answer is apparent weight is zero.
You are still accelerating downwards at 9.8m/s^2 (if you are on Earth).
You still are being affected by the Earth's gravity.
Not all because of the previous two statements.
Not none because apparent weight is zero as you are falling.
Answer: Voltage is the same across each component of the parallel circuit. The sum of the currents through each path is equal to the total current that flows from the source. You can find total resistance in a Parallel circuit with the following formula: 1/Rt = 1/R1 + 1/R2 + 1/R3 +.
Hope this helps!