Assuming this coin is on earth and that it wasn’t dropped forcefully:
Use the formula d = 1/2at^2. Rewriting using a=g and solving for height h gets us h = 1/2(9.8)t^2.
In this case that would get that the change in height h is 0.5(9.8)(0.3^2) = 0.441 m.
Explanation:
s = ut + 1/2 a t^2
200 = 0 * 6 + 1/2 * a * (6)^2
200 = 1/2 * a * 36
200 = 18 a
a = 200/18
a= 11.1m/sec^2
v = u + at
v = 0 + 11.1 * 6
v = 66.6m/s
hope it helps you
Answer:
it is light
Explanation:
the arrow that says light is on the glass it must be near from tungsten
Answer:
The first flowering plants appeared in the Mesozoic era, not the Paleozoic era.
Explanation:
The Mesozoic era was an era where numerous organisms started to develop in very unique and more advanced ways, both the animals and the plants. In the last period of the Mesozoic, the Cretaceous, the first flowering plants started to appear on the scene. This was revolutionary trait of the plants, and soon these plants started to occupy more and more space and became one of the dominant organisms on the planet. Other important evolution that took place in this period are the appearance of the dinosaurs and the mammals, both becoming the dominant animals on the planet, first the dinosaurs, after that the mammals.
A) 8.11 m/s
For a satellite orbiting around an asteroid, the centripetal force is provided by the gravitational attraction between the satellite and the asteroid:

where
m is the satellite's mass
v is the speed
R is the radius of the asteroide
h is the altitude of the satellite
G is the gravitational constant
M is the mass of the asteroid
Solving the equation for v, we find

where:




Substituting into the formula,

B) 11.47 m/s
The escape speed of an object from the surface of a planet/asteroid is given by

where:




Substituting into the formula, we find:
