The theoretical proportion is given by the balanced chemical equation:
2 mol NBr / 3 mol Na OH
Then x mol NaOH / 40 mol NBr3 = 3mol NaOH/2 mol NBr3
Solve for x, x = 40 * 3/2 = 60 mol NaOH.
Given that there are 48 mol NaOH (less than 60) this is the limitant reactant and the other is the excess reactant.
Answer: NBr3..
Its inorganic as MgCO3 is contains no carbon more hydrogen which is a crutial component of all organic compounds
<span>The high-energy electron travels down an electron transport chain, losing energy as it goes.
Some of the released energy drives pumping of </span><span><span>\text H^+<span>H<span><span>+</span><span></span></span></span></span>H, start superscript, plus, end superscript</span><span> ions from the stroma into the thylakoid interior, building a gradient.
</span><span><span>H^+<span>H<span><span>+</span><span></span></span></span></span>H, start superscript, plus, end superscript</span><span> ions from the splitting of water also add to the gradient.
</span><span><span> H^+<span>H<span><span>+</span><span></span></span></span></span>H, start superscript, plus, end superscript</span><span> ions flow down their gradient and into the stroma, they pass through ATP synthase, driving ATP production in a process known as </span>chemiosmosis<span>.</span>
2NaClO₃ → 2NaCl + 3O₂
mole ratio of NaClO₃ to O₂ is 2 : 3
∴ if moles of NaClO₃ = 12 mol
then moles of O₂ =
= 18 mol
Mass of O₂ = mol of O₂ × molar mass of O₂
= 18 mol × 16 g/mol
= 288 g
So I wasn't sure which equation to use since you did not specify so I just used the decomposition reaction. If you should have used another reaction then just follow the same steps and you'll get your answer.